Florian V. Englich

Learn More
We describe a portable diode-laser-based sensor for NH(3) detection using vibrational overtone absorption spectroscopy at 1.53 mum. Use of fiber-coupled optical elements makes such a trace gas sensor rugged and easy to align. On-line data acquisition and processing requiring <30 s can be performed with a laptop PC running LabVIEW software. The gas sensor(More)
Measurements of NH(3) and CO(2) were made in bioreactor vent gases with distributed-feedback diode-laser sensors operating near 2 mum. Calculated spectra of NH(3) and CO(2) were used to determine the optimum transitions for interrogating with an absorption sensor. For ammonia, a strong and isolated absorption transition at 5016.977 cm(-1) was selected for(More)
We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium(More)
All commercially available reagents were used without further purification. Thin layer chromatograms were run on MERCK aluminum-backed silica gel 60 F 254 plates (20 × 20 cm, 0.25 mm thickness) and viewed under 254 nm UV light. Flash column chromatography was performed using Davisil silica gel 60 (particle size 0.040–0.063 mm) from Grace Gmbh and Co. KG(More)
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this(More)
We report a novel fiber-optic sensing architecture for the detection of paramagnetic gases. By interacting a modulated magnetic field with guided light within a microstructured optical fiber, it is possible to exploit Faraday Rotation Spectroscopy (FRS) within unprecedentedly small sample volumes. This approach, which utilizes magnetic circular(More)
  • 1