Share This Author
Ensemble Adversarial Training: Attacks and Defenses
- Florian Tramèr, A. Kurakin, Nicolas Papernot, D. Boneh, P. Mcdaniel
- Computer ScienceICLR
- 19 May 2017
TLDR
Advances and Open Problems in Federated Learning
- P. Kairouz, H. B. McMahan, Sen Zhao
- Computer ScienceFound. Trends Mach. Learn.
- 10 December 2019
TLDR
Stealing Machine Learning Models via Prediction APIs
- Florian Tramèr, Fan Zhang, A. Juels, M. Reiter, T. Ristenpart
- Computer ScienceUSENIX Security Symposium
- 10 August 2016
TLDR
On Adaptive Attacks to Adversarial Example Defenses
- Florian Tramèr, Nicholas Carlini, Wieland Brendel, A. Madry
- Computer ScienceNeurIPS
- 19 February 2020
TLDR
Adversarial Training and Robustness for Multiple Perturbations
- Florian Tramèr, D. Boneh
- Computer ScienceNeurIPS
- 30 April 2019
TLDR
The Space of Transferable Adversarial Examples
- Florian Tramèr, Nicolas Papernot, Ian J. Goodfellow, D. Boneh, P. Mcdaniel
- Computer ScienceArXiv
- 11 April 2017
TLDR
Physical Adversarial Examples for Object Detectors
- Kevin Eykholt, I. Evtimov, D. Song
- Computer ScienceWOOT @ USENIX Security Symposium
- 20 July 2018
TLDR
On the Opportunities and Risks of Foundation Models
- Rishi Bommasani, Drew A. Hudson, Percy Liang
- Computer ScienceArXiv
- 16 August 2021
TLDR
Extracting Training Data from Large Language Models
- Nicholas Carlini, Florian Tramèr, Colin Raffel
- Computer ScienceUSENIX Security Symposium
- 14 December 2020
TLDR
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
- Florian Tramèr, D. Boneh
- Computer ScienceICLR
- 8 June 2018
TLDR
...
...