Florian Meirer

Learn More
Strontium ranelate (SrR) is a relatively new treatment for osteoporosis. In this study we investigated its potential impact on human bone material quality in transiliac bone biopsies from postmenopausal osteoporotic women treated 3 years with calcium and vitamin D plus either 2 g SrR per day or placebo. Bone mineralization density distribution (BMDD),(More)
A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource operating from 5 to 15 keV X-ray energy with 14 to 30 microm2 field of view has been used for high-resolution (30-40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks(More)
A highly specific accumulation of the toxic element lead was recently measured in the transition zone between non-calcified and calcified normal human articular cartilage. This transition zone, the so-called `tidemark', is considered to be an active calcification front of great clinical importance. However, little is known about the mechanisms of(More)
How does one search for a needle in a multi-dimensional haystack without knowing what a needle is and without knowing if there is one in the haystack? This kind of problem requires a paradigm shift away from hypothesis driven searches of the data towards a methodology that lets the data speak for itself. Dynamic Quantum Clustering (DQC) is such a(More)
Based on clinical trials showing the efficacy to reduce vertebral and non-vertebral fractures, strontium ranelate (SrR) has been approved in several countries for the treatment of postmenopausal osteoporosis. Hence, it is of special clinical interest to elucidate how the Sr uptake is influenced by dietary Ca deficiency as well as by the formula of Sr(More)
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography,(More)
1 Atominstitut, Vienna University of Technology, 1020 Wien, Austria 2 ITC-irst, via Sommarive 18, 38050 Povo (Trento) Italy 3 Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eötvös University, Budapest, Hungary 4 Department of Plant Physiology, L. Eötvös University, Budapest, Hungary 5 Department of Chemistry,(More)
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano- and micrometer-scale factors at the origin of macroscopic behavior. While different electron- and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the(More)
Dopant depth profiling and dose determination are essential for ultrashallow junction technology development. However they pose a challenge to the widely used dynamic secondary ion mass spectroscopy SIMS technique that suffers uncertainties due to an initial transient width comparable to the dopant depth distribution. In this work the authors report on the(More)
Transmission X-ray microscopy (TXM) has been well recognized as a powerful tool for non-destructive investigation of the three-dimensional inner structure of a sample with spatial resolution down to a few tens of nanometers, especially when combined with synchrotron radiation sources. Recent developments of this technique have presented a need for new tools(More)