Florian M Piegsa

Learn More
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times(More)
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1  μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined(More)
We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin-depolarization rates and also of shifts in the(More)
We report on a neutron particle physics experiment, which provides for the first time an upper limit on the strength of an axial coupling constant for a new light spin 1 boson in the millimeter range. Such a new boson would mediate a new force between ordinary fermions, like neutrons and protons. The experiment was set up at the cold neutron reflectometer(More)
Ultracold neutrons (UCNs) play an important role for precise measurements of the properties of the neutron and its interactions. During the past 25 years, a neutron turbine coupled to a liquid deuterium cold neutron source at a high-flux reactor has defined the state of the art for UCN production, despite a long history of efforts towards a new generation(More)
We report on muonium (Mu) emission into vacuum following μ(+) implantation in mesoporous thin SiO(2) films. We obtain a yield of Mu into vacuum of (38±4)% at 250 K and (20±4)% at 100 K for 5 keV μ(+) implantation energy. From the implantation energy dependence of the Mu vacuum yield we determine the Mu diffusion constants in these films: D(Mu)(250(More)
We report on a novel neutron radiography technique that uses the Ramsey principle, a method similar to neutron spin echo. For the first time quantitative imaging measurements of magnetic objects and fields could be performed. The strength of the spin-dependent magnetic interaction is detected by a change in the Larmor precession frequency of the neutron(More)
A 10  MeV/c positive muon beam was stopped in helium gas of a few mbar in a magnetic field of 5 T. The muon "swarm" has been efficiently compressed from a length of 16 cm down to a few mm along the magnetic field axis (longitudinal compression) using electrostatic fields. The simulation reproduces the low energy interactions of slow muons in helium gas.(More)
  • 1