Learn More
BACKGROUND Genome sciences have experienced an increasing demand for efficient text-processing tools that can extract biologically relevant information from the growing amount of published literature. In response, a range of text-mining and information-extraction tools have recently been developed specifically for the biological domain. Such tools are only(More)
We present the results of the BioCreative II.5 evaluation in association with the FEBS Letters experiment, where authors created Structured Digital Abstracts to capture information about protein-protein interactions. The BioCreative II.5 challenge evaluated automatic annotations from 15 text mining teams based on a gold standard created by reconciling(More)
A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information(More)
BACKGROUND The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing. RESULTS We designed a(More)
BACKGROUND Determining usefulness of biomedical text mining systems requires realistic task definition and data selection criteria without artificial constraints, measuring performance aspects that go beyond traditional metrics. The BioCreative III Protein-Protein Interaction (PPI) tasks were motivated by such considerations, trying to address aspects(More)
We introduce the first meta-service for information extraction in molecular biology, the BioCreative MetaServer (BCMS; http://bcms.bioinfo.cnio.es/). This prototype platform is a joint effort of 13 research groups and provides automatically generated annotations for PubMed/Medline abstracts. Annotation types cover gene names, gene IDs, species, and(More)
The automatic extraction of chemical information from text requires the recognition of chemical entity mentions as one of its key steps. When developing supervised named entity recognition (NER) systems, the availability of a large, manually annotated text corpus is desirable. Furthermore, large corpora permit the robust evaluation and comparison of(More)
Natural language processing (NLP) and text mining technologies for the chemical domain (ChemNLP or chemical text mining) are key to improve the access and integration of information from unstructured data such as patents or the scientific literature. Therefore, the BioCreative organizers posed the CHEMDNER (chemical compound and drug name recognition)(More)
MOTIVATION The exponential growth of scientific literature has resulted in a massive amount of unstructured natural language data that cannot be directly handled by means of bioinformatics tools. Such tools generally require structured data, often generated through a cumbersome process of manual literature curation. Herein, we present MyMiner, a free and(More)