Florian Kiefer

Learn More
Protein structure homology modelling has become a routine technique to generate 3D models for proteins when experimental structures are not available. Fully automated servers such as SWISS-MODEL with user-friendly web interfaces generate reliable models without the need for complex software packages or downloading large databases. Here, we describe the(More)
SWISS-MODEL Repository (http://swissmodel.expasy.org/repository/) is a database of 3D protein structure models generated by the SWISS-MODEL homology-modelling pipeline. The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of annotated 3D protein models generated by automated homology modelling for all sequences in(More)
Homology modeling aims to build three-dimensional protein structure models using experimentally determined structures of related family members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert system. For a given target protein, a library of experimental protein structures is searched to identify suitable templates. On the(More)
The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By(More)
This manuscript presents the assessment of the template-based modeling category of the seventh Critical Assessment of Techniques for Protein Structure Prediction (CASP7). The accuracy of predicted protein models for 108 target domains was assessed based on a detailed comparison between the experimental and predicted structures. The assessment was performed(More)
In the Ninth Edition of the Critical Assessment of Techniques for Protein Structure Prediction (CASP9), 61,665 models submitted by 176 groups were assessed for their accuracy in the template based modeling category. The models were evaluated numerically in comparison to their experimental control structures using two global measures (GDT and GDC), and a(More)
Structural Genomics has been successful in determining the structures of many unique proteins in a high throughput manner. Still, the number of known protein sequences is much larger than the number of experimentally solved protein structures. Homology (or comparative) modeling methods make use of experimental protein structures to build models for(More)
The Protein Structure Initiative Structural Genomics Knowledgebase (PSI SGKB, http://kb.psi-structuralgenomics.org) has been created to turn the products of the PSI structural genomics effort into knowledge that can be used by the biological research community to understand living systems and disease. This resource provides central access to structures in(More)
Cellular processes often depend on interactions between proteins and the formation of macromolecular complexes. The impairment of such interactions can lead to deregulation of pathways resulting in disease states, and it is hence crucial to gain insights into the nature of macromolecular assemblies. Detailed structural knowledge about complexes and(More)
The reaction of (S)-2,5-dihydrophenylalanine 1 with ruthenium(III) chloride yields the μ-chloro-bridged dimeric η(6)-phenylalanine ethyl ester complex 3, which can be converted into the monomeric analogue, η(6):κ(1)-phenylalanine ethyl ester complex 12, under basic conditions. Studies were carried out to determine the stability and reactivity of complexes(More)
  • 1