Learn More
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type-II vs. type-III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs.(More)
One important aspect of climate change is the increase in average temperature, which will not only have direct physiological effects on all species but also indirectly modifies abundances, interaction strengths, food-web topologies, community stability and functioning. In this theme issue, we highlight a novel pathway through which warming indirectly(More)
Species diversity is changing globally and locally, but the complexity of ecological communities hampers a general understanding of the consequences of animal species loss on ecosystem functioning. High animal diversity increases complementarity of herbivores but also increases feeding rates within the consumer guild. Depending on the balance of these(More)
Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in(More)
Understanding effects of species loss in complex food webs with multiple trophic levels is complicated by the idiosyncrasy of the predator effects on lower trophic levels: direct and indirect effects intermingle and may increase, decrease or not affect ecosystem functioning. We introduce a reductionist approach explaining a predator's trophic effect only by(More)
The global decline in biodiversity is especially evident in higher trophic levels as predators display higher sensitivity to environmental change than organisms from lower trophic levels. This is even more alarming given the paucity of knowledge about the role of individual predator species in sustaining ecosystem functioning. The effect of predator(More)
Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number(More)
Ecosystems may exhibit catastrophic shifts, i.e. abrupt and irreversible responses of ecosystem functions and services to continuous changes in external conditions. The search for early warning signs of approaching shifts has so far mainly been conducted on theoretical models assuming spatially-homogeneous external pressures (e.g. climatic). Here, we(More)
It is widely accepted that global warming will adversely affect ecological communities. As ecosystems are simultaneously exposed to other anthropogenic influences, it is important to address the effects of climate change in the context of many stressors. Nutrient enrichment might offset some of the energy demands that warming can exert on organisms by(More)
  • 1