Florent Morel

Learn More
This paper presents a comparative study of three predictive current control schemes for permanent-magnet synchronous machine (PMSM) drives. The first control scheme predicts the future evolution of the currents for each possible configuration of the inverter legs. Then, the switching state which minimizes a given cost function is selected and applied during(More)
This paper presents the implementation of a hybrid-control strategy applied to a permanent-magnet synchronous-motor (PMSM) drive. Hybrid control is a general approach for control of a switching-based hybrid system (HS). This class of HS includes a continuous process controlled by a discrete controller with a finite number of states. In the case of ac motor(More)
This paper presents a control scheme suitable for systems composed of a continuous process modulated in energy by a power converter with a finite number of topologies. To track the continuous reference values, a topology of the power converter is determined from a criterion based on a process state variable model and taking into account the possible(More)
This paper describes and evaluates an original boost converter able to harvest energy from low-power and low-voltage power sources. Design and sizing are made according to specifications issued from the stringent characteristics of microbial electric generators such as microbial fuel cells and microbial desalination cells. The harvested power is 10mW under(More)
Analogue control of monolithic DC/DC converters is technologically coming to a limit due to high switching frequency and a request for large regulation bandwidth. Digital control is now experimented for low-power low-voltage switch-mode power supply. Digital implementation of analogue solutions does not prove real performances. This paper compares a(More)
In order to efficiently reduce EMI emissions, especially common mode (CM) conducted noise emissions that are the most disturbing in any adjustable-speed drive systems, behaviour understanding and propagation path knowing of parasitic currents in the system are indispensable. In this paper, a simple CM disturbances modelling is proposed to estimate or(More)
Silicon carbide (SiC) power devices can operate at much higher junction temperature than those made of silicon. However, this does not mean that SiC devices can operate without a good cooling system. To demonstrate this, the model of a merged p-i-n Schottky (MPS) SiC diode is presented, and its parameters are identified with experimental measurements. This(More)
The reduced switching times of silicon carbide (SiC) components compared to Si components in similar conditions are a great advantage from the point of view of efficiency, but, due to the high dv/dt and di/dt, conducted electromagnetic emissions are increased. Therefore, the availability of a method which can predict these emissions is increasingly(More)
Many research efforts have been dedicated to matrix converters for several years. As major technological issues are now solved, this structure will widespread in industrial applications, in particular with AC motors. Current control is a key issue for AC motor drives, so many control schemes have been proposed. Some of them proposed at first for inverters,(More)
This paper presents a control scheme for a multilevel multi-cell converter. For this type of converters, load current and capacitor voltages must be jointly controlled. Moreover the real-time constraint is important. This constraint leads us to propose a control based on a simplified state-space model. The model allows predicting the state vector evolution(More)