Florent D'halluin

Learn More
We presented and evaluated an approach based on HMM, GMR, and dynamical systems to allow robots to acquire new skills by imitation. Using HMM allowed us to get rid of the explicit time dependency that was considered in our previous work [12], by encapsulating precedence information within the statistical representation. In the context of separated learning(More)
We consider the problem of learning robust models of robot motion through demonstration. An approach based on Hidden Markov Model (HMM) and Gaussian Mixture Regression (GMR) is proposed to extract redundancies across multiple demonstrations, and build a time-independent model of a set of movements demonstrated by a human user. Two experiments are presented(More)
  • 1