Learn More
The Drosophila eye is patterned by a dorsal-ventral organising centre mechanistically similar to those in the fly wing and the vertebrate limb bud. Here we show how this organising centre in the eye is initiated - the first event in retinal patterning. Early in development the eye primordium is divided into dorsal and ventral compartments. The dorsally(More)
It is currently unclear how intrinsic and extrinsic mechanisms cooperate to control the progression from self-renewing to neurogenic divisions in retinal precursor cells. Here, we use the zebrafish flotte lotte (flo) mutant, which carries a mutation in the elys (ahctf1) gene, to study the relationship between cell cycle progression and neuronal(More)
The Iroquois complex (Iro-C) homeodomain proteins allow cells at the proximal part of the Drosophila imaginal wing disc to form mesothoracic body wall (notum). Cells lacking these proteins form wing hinge structures instead (tegula and axillary sclerites). Moreover, the mutant cells impose on neighboring wild-type cells more distal developmental fates, like(More)
During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior) axes is required for correct spatial representation in the(More)
The Iroquois complex (Iro-C) genes are expressed in the dorsal compartment of the Drosophila eye/antenna imaginal disc. Previous work has shown that the Iro-C homeoproteins are essential for establishing a dorsoventral pattern organizing center necessary for eye development. Here we show that, in addition, the Iro-C products are required for the(More)
During development, the imaginal wing disc of Drosophila is subdivided along the proximal-distal axis into different territories that will give rise to body wall (notum and mesothoracic pleura) and appendage (wing hinge and wing blade). Expression of the Iroquois complex (Iro-C) homeobox genes in the most proximal part of the disc defines the notum, since(More)
During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the(More)
During tissue morphogenesis and differentiation, cells must self-renew while contemporaneously generating daughters that contribute to the growing tissue. How tissues achieve this precise balance between proliferation and differentiation is, in most instances, poorly understood. This is in part due to the difficulties in dissociating the mechanisms that(More)
The Iroquois (Iro) family of genes are found in nematodes, insects and vertebrates. They usually occur in one or two genomic clusters of three genes each and encode transcriptional controllers that possess a characteristic homeodomain. The Iro genes function early in development to specify the identity of diverse territories of the body, such as the dorsal(More)
During regional patterning of the anterior neural plate, a medially positioned domain of cells is specified to adopt retinal identity. These eye field cells remain coherent as they undergo morphogenetic events distinct from other prospective forebrain domains. We show that two branches of the Wnt signaling pathway coordinate cell fate determination with(More)