Learn More
A large amount of aging individuals show diminished cognitive and endocrine capabilities. The main brain areas involved in these changes are the hippocampus and hypothalamus, two regions possessing high plasticity and implicated in cognitive and endocrine functions, respectively. Among neurotrophins (considered as genuine molecular mediators of synaptic(More)
Chronic alcohol consumption has adverse effects on the central nervous system, affecting some hippocampal and hypothalamic functions. In this study we tempted to demonstrate that some of these modifications could involve impairment of neurotrophic factors. Three experimental groups of male Sprague Dawley rats were studied: one control group, one chronically(More)
Previous studies demonstrated the involvement of transforming growth factor-alpha (TGF alpha), a member of the epidermal growth factor (EGF) family, in the developmental regulation of hypothalamic LHRH release. Although both TGF alpha and EGF stimulate LHRH release, they do not appear to act directly on LHRH neurons, as no EGF/TGF alpha receptors are(More)
Although neurotrophins (NTs) have been extensively studied as neuronal survival factors in some areas of the central nervous system, little is known about their function or cellular targets in the hypothalamus. To understand their functional significance and sites of action on hypothalamic neurons, we examined the effects of their cognate ligands on(More)
Prostaglandin E2 (PGE2) mediates the stimulatory effect of norepinephrine (NE) on the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling reproductive function. In rodents, this facilitatory effect requires previous exposure to estradiol, suggesting that the steroid affects downstream components in the cascade that leads(More)
The concept is proposed that the central control of mammalian female puberty requires the interactive participation of neuronal networks and glial cells of the astrocytic lineage. According to this concept neurons and astrocytes control the pubertal process by regulating the secretory activity of those neurons that secrete luteinizing hormone-releasing(More)
Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neuronal survival and plasticity that binds to high-affinity receptors named TrkB. In the central nervous system, brain insults, including stress, induce modifications in BDNF messenger RNA (mRNA) expression. The present study attempted to determine in the adult rat pituitary, a(More)
We demonstrated that short times (15 min) of immobilization stress application induced a very rapid increase in brain-derived neurotrophic factor (BDNF) mRNA expression in rat hypothalamus followed by a BDNF protein increase. The early change in total BDNF mRNA level seems to reflect increased expression of the BDNF transcript containing exon III, which was(More)
The effect of N-methyl-D-aspartate (NMDA) on intracellular calcium concentration ([Ca2+]i) was analyzed in cultured hypothalamic neurons using the Ca(2+)-sensitive fluorescent dye Fura-2. The resting [Ca2+]i in silent neurons ranged between 35 and 100 nM and regular spontaneous [Ca2+]i oscillations were observed in 37% of neurons. Such [Ca2+]i oscillations(More)
Although the long-lasting effects of neurotrophins have been extensively studied, less data are available on their rapid effects, especially on peptide release. In the present report, we investigated rapid effects of neurotrophins on somatostatin release and on intracellular calcium concentration ([Ca(2+)](i)) in primary cultures of hypothalamic neurons.(More)