Florence C. Gabriel

Learn More
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols(More)
It has been suggested that a simple non-symbolic magnitude comparison task is sufficient to measure the acuity of a putative Approximate Number System (ANS). A proposed measure of the ANS, the so-called "internal Weber fraction" (w), would provide a clear measure of ANS acuity. However, ANS studies have never presented adequate evidence that visual stimulus(More)
We determined how various cognitive abilities, including several measures of a proposed domain-specific number sense, relate to mathematical competence in nearly 100 9-year-old children with normal reading skill. Results are consistent with an extended number processing network and suggest that important processing nodes of this network are phonological(More)
Fractions are well known to be difficult to learn. Various hypotheses have been proposed in order to explain those difficulties: fractions can denote different concepts; their understanding requires a conceptual reorganization with regard to natural numbers; and using fractions involves the articulation of conceptual knowledge with complex manipulation of(More)
Fractions constitute a stumbling block in mathematics education. To improve children’s understanding of fractions, we designed an intervention based on learningby-doing activities, which focused on the representation of the magnitude of fractions. Participants were 292 Grade 4 and 5 children. Half of the classes received experimental instruction, while the(More)
Two experiments examined whether the processing of the magnitude of fractions is global or componential. Previously, some authors concluded that adults process the numerators and denominators of fractions separately and do not access the global magnitude of fractions. Conversely, others reported evidence suggesting that the global magnitude of fractions is(More)
We investigated the development of the mental representation of the magnitude of fractions during the initial stages of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction magnitude in a numerical comparison task and a matching task. There were global distance effects in the comparison task, but(More)
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based(More)
Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether(More)
  • 1