Flore Harle

  • Citations Per Year
Learn More
This paper addresses the issue of detecting change-points in time series. The proposed model, called the Bernoulli Detector, is presented first in a univariate context. This approach differs from existing counterparts by making only assumptions on the nature of the change-points, and does not depend on hypothesis on the distribution of the data, contrary to(More)
In this paper, we propose a Bayesian approach for multivariate time series segmentation. A robust non-parametric test, based on rank statistics, is derived in a Bayesian framework to yield robust distribution-independent segmentations of piecewise constant multivariate time series for which mutual dependencies are unknown. By modelling rank-test p-values, a(More)
  • 1