Flora de Pablo

Learn More
The cytokine leukaemia inhibitory factor (LIF) is up-regulated in glial cells after injury to the peripheral and central nervous systems. In addition, LIF is required for the changes in neuropeptide expression that normally occur when the axons of sympathetic and sensory neurons are transected. We investigated whether LIF is also necessary for the initial(More)
Insulin-like growth factor-1 (IGF-1) has been shown to play a key role during embryonic and postnatal development of the CNS, but its effect on a sensory organ has not been studied in vivo. Therefore, we examined cochlear growth, differentiation, and maturation in Igf-1 gene knock-out mice at postnatal days 5 (P5), P8, and P20 by using stereological methods(More)
Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the(More)
While insulin-like growth factor-I (IGF-I) supports neuronal and glial differentiation in the CNS, it is largely unknown whether IGF-I also influences neuronal migration and positioning. We show here that the pattern of olfactory bulb (OB) layering is altered in Igf-I (-/-) mice. In these animals, Tbr1(+)-glutamatergic neurons are misplaced in the mitral(More)
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural(More)
Regulated preproinsulin gene expression in nonpancreatic tissues during development has been demonstrated in rodents, Xenopus and chicken. Little is known, however, about the synthesis and processing of the primary protein product, proinsulin, in comparison with these events in pancreas. Using specific antisera and immunocytochemistry, immunoblot and HPLC(More)
To better understand the role of insulin-related growth factors in neural development, we have characterized by in situ hybridization in chicken embryonic retina the patterns of gene expression for insulin, insulin-like growth factor I (IGF-I), their respective receptors and the IGF binding protein 5 (IGFBP5) from early stages (E6) until late stages(More)
The extensive colocalization of insulin receptor (IR) and insulin-like growth factor-I receptor (IGFR) messenger RNAs during central nervous system development, together with the effects of insulin and IGF-I in neurogenesis, raises the question of how stage- and factor-specific signaling occurs. Thus, it is necessary to characterize the receptor proteins(More)
Previous studies on double deficient mice for leukemia inhibitory factor (LIF) and insulin-like growth factor I (IGF-I) reported that they died of respiratory failure, with abnormal lung histology and altered expression of pulmonary markers. Here we analyzed prenatal Lif/Igf-I double mutant mouse embryos to characterize LIF and IGF-I cooperative roles in(More)
Programmed cell death is an established developmental process in the nervous system. Whereas the regulation and the developmental role of neuronal cell death have been widely demonstrated, the relevance of cell death during early neurogenesis, the cells affected and the identity of regulatory local growth factors remain poorly characterized. We have(More)