Flora Hui

Learn More
Fibronectin fragments have both catabolic and anabolic activities toward articular cartilage explants in vitro. Whereas a 1 nM concentration of an N-terminal 29 kDa fibronectin fragment (Fn-f) increases the proteoglycan (PG) content of cartilage without induction of matrix metalloproteinases (MMPs), 0.1-1 microM Fn-f temporarily suppresses PG synthesis and(More)
We have reported that three different Fn fragments (Fn-f) added to bovine articular cartilage cultured in serum-free DMEM cause marked elevation of proteoglycan (PG) degradation and release into the culture media. We report here that the PG release required the continual presence of Fn-f, that PG release still occurred when serum-free cultures were switched(More)
OBJECTIVE To investigate whether fibronectin fragments (Fn-fs), shown to damage cultured cartilage, can be found in cartilage from patients with osteoarthritis (OA) or rheumatoid arthritis, or can be generated from fibronectin (Fn) within synovial fluids or from Fn in the matrix of cultured cartilage. To also determine whether cartilage or synovial fluid(More)
We reported earlier that Fn fragments (Fn-f) added to bovine articular cartilage cultured in serum-free DMEM cause marked elevated release of protease activity within a few days. This results in greatly elevated rates of release of proteoglycan (PG). We have now extended our studies to 4-week cultures of cartilage in the presence of 10% serum. We report(More)
Addition of fibronectin fragments to bovine articular cartilage explant cultures results in enhanced release of metalloproteinases and rapid cartilage proteoglycan (PG) degradation and loss. The chondrolysis begins with rapid PG degradation which markedly slows after 1 week. Preliminary observations suggest that catabolic cytokines mediate chondrolytic(More)
We reported earlier that fibronectin fragments (Fn-f) added to bovine articular cartilage cultured in serum-free culture causes marked protease expression with resultant proteoglycan (PG) degradation and release into the culture media. We have further characterized the effects of Fn-f by studies of the effects on proteoglycan, collagen, general protein, and(More)
Fibronectin fragments damage cartilage in vitro by greatly enhancing metalloproteinases and suppressing proteoglycan (PG) synthesis which results in severe cartilage PG depletion. Since reactive oxygen species (ROS) have been implicated in catabolic cytokine action and preliminary data suggested that catabolic cytokines such as TNF-alpha, IL-1 alpha, IL-1(More)
OBJECTIVE AND DESIGN The objective was to determine if agents that suppress catabolism might also enhance repair of irreversibly damaged cartilage. MATERIAL Articular cartilage from bovine metacarpophalangeal joints was studied in explant culture. TREATMENT Fibronectin fragments or IL-1 alpha, which potently cause proteoglycan (PG) loss from cartilage,(More)
A commercial preparation of 800-kDa hyaluronic acid (HA), (ARTZ from Seikagaku, Inc.), has been used as a therapeutic intervention in the treatment of osteoarthritis (OA). We tested the effect of this HA form, HA/800, in an in vitro cartilage chondrolytic system in which a specific amino-terminal 29-kDa fragment of fibronectin (Fn-f) penetrates cartilage(More)
In an accompanying manuscript, it was shown that the cartilage chondrolytic activities of fibronectin fragments (Fn-f), which are mediated through catabolic cytokines such as TNF-alpha, IL-1 and IL-6, could be suppressed by anti-oxidants (AOs). The AOs neutralized reactive oxygen species (ROS) which are known to mediate catabolic cytokine action. The(More)