Learn More
Brain functioning is increasingly seen as a complex interplay of dynamic neural systems that rely on the integrity of structural and functional networks. Recent studies that have investigated functional and structural networks in epilepsy have revealed specific disruptions in connectivity and network topology and, consequently, have led to a shift from(More)
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) can both arise due to mutations of SCN1A, the gene encoding the alpha 1 pore-forming subunit of the sodium channel. GEFS+ refers to a familial epilepsy syndrome where at least two family members have phenotypes that fit within the GEFS+ spectrum. The GEFS+ spectrum comprises a range of(More)
OBJECTIVE The purpose of this study was to systematically analyze the associations between different TSC1 and TSC2 mutations and the neurologic and cognitive phenotype in patients with tuberous sclerosis complex (TSC). METHODS Mutation analysis was performed in 58 patients with TSC. Epilepsy variables, including EEG, were classified. A cognition index was(More)
PURPOSE We compared epileptiform activity recorded with EEG and magnetoencephalography (MEG) in 19 patients with tuberous sclerosis complex (TSC) and epilepsy. METHODS High-resolution (HR) EEG, HR-MEG, and 1.5-T MRI scans were performed. Epileptiform spikes were identified in EEG and MEG recordings offline by three observers. Spikes for which the(More)
BACKGROUND Patients with tuberous sclerosis complex and drug-resistant epilepsy may be considered candidates for epilepsy surgery. This demands the unambiguous demonstration of the epileptogenicity of one of the tubers. OBJECTIVE To test whether diffusion-weighted magnetic resonance imaging enables differentiation of epileptogenic tubers from inert ones.(More)
Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures, remain largely unknown.(More)
Tuberous sclerosis complex (TSC) is an autosomal dominant, multisystem disorder caused by mutations in either the TSC1 or TSC2 genes and characterized by developmental brain abnormalities. In the present study we discuss the neuropathological findings of a 32-year-old patient with a germ-line mutation in the TSC2 gene. Post mortem MRI combined with(More)
Neurophysiological studies have reported functional network alterations in epilepsy, most consistently in the theta frequency band. Highly interconnected brain regions (so-called 'hubs') seem to be important in these epileptic networks. High frequency oscillations (HFOs) in intracranial EEG recordings are recently discovered biomarkers that can identify the(More)
Establishing an etiologic diagnosis in adults with refractory epilepsy and intellectual disability is challenging. We analyzed the phenotype of 14 adults with severe myoclonic epilepsy of infancy. This phenotype comprised heterogeneous seizure types with nocturnal generalized tonic-clonic seizures predominating, mild to severe intellectual disability, and(More)
Electrical status epilepticus in sleep syndrome is the association of the electroencephalographic pattern and deficits in language or global cognitive function and behavioral problems. The etiology is often unknown, but genetic risk factors have been implicated. Array-based comparative genomic hybridization was used to identify copy number variations in 13(More)