Learn More
Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The(More)
Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little(More)
The MAPK cascade is an evolutionary conserved signaling pathway that links external stimuli with cellular responses. Using polymerase chain reaction (PCR), a DNA fragment corresponding to a Solanum tuberosum MAPK, StMPK1, was isolated. StMPK1 amino acid sequence displayed over 90% identity with tomato MPK1 (LeMPK1) and tobacco SIPK. Southern blot analysis(More)
Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study(More)
A C subunit of the heterotrimeric nuclear factor Y (NF-YC1) was shown to play a key role in nodule organogenesis and bacterial infection during the nitrogen fixing symbiosis established between common bean (Phaseolus vulgaris) and Rhizobium etli. To identify other proteins involved in this process, we used the yeast (Saccharomyces cerevisiae) two-hybrid(More)
Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that(More)
Transcription factors are DNA binding proteins that regulate gene expression. The nitrogen fixing symbiosis established between legume plants and soil bacteria is a complex interaction, in which plants need to integrate signals derived from the symbiont and the surrounding environment to initiate the developmental program of nodule organogenesis and the(More)
StMBF1 (Solanum tuberosum multiprotein bridging factor 1) is a plant member of the MBF1 family of transcriptional co-activators. Previously, it has been described as being up-regulated at the transcriptional level by fungal and abiotic stress. To understand whether StMBF1 is also regulated at the post-translational level, in vitro as well as in vivo(More)
Zoospores are critical in the disease cycle of Phytophthora infestans, a member of the oomycete group of fungus-like microbes and the cause of potato late blight. A protein kinase induced during zoosporogenesis, Pipkz1, was shown to interact in the yeast two-hybrid system with a putative bZIP transcription factor. This interaction was confirmed in vitro(More)
Translation of mRNAs is a key regulatory step that contributes to the coordination and modulation of eukaryotic gene expression during development or adaptation to the environment. mRNA stability or translatability can be regulated by the action of small regulatory RNAs (sRNAs), which control diverse biological processes. Under low nitrogen conditions,(More)