Flavia Pizzagalli

Learn More
BACKGROUND & AIMS Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8. METHODS Tissue(More)
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated(More)
Circulating hormones and local biotransformation of steroid precursors are both sources of estrogen in human mammary tissue. Estrone-3-sulfate (E(1)S) is an important estrogenic form in premenopausal women, and dehydroepiandrosterone sulfate (DHEAS) constitutes a major adrenal precursor. Membrane transport systems that govern delivery of these anionic(More)
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in(More)
Deficient N-methyl-D-aspartate (NMDA) receptor transmission is thought to underlie schizophrenia. An approach for normalizing glutamate neurotransmission by enhancing NMDA receptor transmission is to increase glycine availability by inhibiting the glycine transporter type 1 (GlyT1). This study investigated the relationship between the plasma concentration(More)
Hypofunction of NMDA receptors has been implicated in neuropsychiatric disorders including schizophrenia. NMDA receptor neurotransmission can be enhanced through inhibition of glycine reuptake by the glycine transporter type 1 (GlyT1). The primary objective of these studies was to explore the relationship between plasma exposure and glycine cerebrospinal(More)
  • 1