Flávio Buiochi

Learn More
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of(More)
Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of(More)
This paper presents the implementation of the relative reflection method for the ultrasonic measurement of the density of liquids, which may be flowing in pipelines, at different temperatures. This technique will be shown to be valid for large-diameter tubes containing flowing liquids. It employs a double-element transducer, consisting of a piezoelectric(More)
The objective of this study is to investigate cardiac bioeffects resulting from ultrasonic stimulation using a specific set of acoustical parameters. Ten Sprague-Dawley rats were anesthetized and exposed to 1-MHz ultrasound pulses of 3-MPa peak rarefactional pressure and approximately 1% duty factor. The pulse repetition frequency started slightly above the(More)
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of(More)
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement(More)
A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic(More)
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient's magnitude and phase at the solid-liquid interface. Although magnitude is a stable(More)
Based on the impulse response and the discrete representation methods, a 3D computational method has been developed to calculate the optimal focal laws to focus the ultrasonic beams through interfaces of complex geometry, and the respective transmitted ultrasonic field generated by NDE transducer arrays. 1- and 2D array transducers are considered. Two(More)
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design(More)