Flávia Sacilotto Donaires

Learn More
The genetic heterogeneity presented by different cell lines derived from glioblastoma (GBM) seems to influence their responses to antitumoral agents. Although GBM tumors present several genomic alterations, it has been assumed that TP53, frequently mutated in GBM, may to some extent be responsible for differences in cellular responses to antitumor agents,(More)
Glioblastoma multiforme (GBM) is one of the most frequent tumors in the central nervous system and the most malignant tumor among gliomas. In the past two decades, cytogenetic and molecular genetic studies have identified a number of recurrent chromosomal abnor‐ malities and genetic alterations in malignant gliomas, particularly in GBM [1]. It was already(More)
Glioblastoma, one of the deadliest forms of brain tumor, responds poorly to available therapies. This highlights the intense search for new treatment approaches, and an emerging strategy is based on molecular targets. In the present work, we aimed to study whether glioblastoma cells can be sensitized by cisplatin combined with LY294002 (LY), which is an(More)
BACKGROUND & AIMS Short telomeres and genetic telomerase defects are risk factors for some human liver diseases, ranging from non-alcoholic fatty liver disease and non-alcoholic steatohepatitis to cirrhosis. In murine models, telomere dysfunction has been shown to metabolically compromise hematopoietic cells, liver and heart via the activation of the(More)
BACKGROUND Myelodysplastic syndromes (MDS) comprise a group of malignant clonal hematologic disorders characterized by ineffective hematopoiesis and propensity for progression to acute myeloid leukemia. Acquired mutations in the gene encoding RNA splicing factor 3B subunit 1 (SF3B1) are highly associated with the MDS subtypes presenting ring sideroblasts,(More)
BACKGROUND Glioblastoma is considered to the most common and malignant brain tumor in adults. Patients have a median survival of approximately one year from diagnosis due to poor response to therapy. OBJECTIVE We applied bioinformatics approaches to predict transcription factors (TF) that are deregulated in glioblastoma in an attempt to point out(More)
Telomeres are repetitive DNA sequences at linear chromosome termini, protecting chromosomes against end-to-end fusion and damage, providing chromosomal stability. Telomeres shorten with mitotic cellular division, but are maintained in cells with high proliferative capacity by telomerase. Loss-of-function mutations in telomere-maintenance genes are genetic(More)
  • 1