Learn More
The sac1 mutant of Chlamydomonas reinhardtii is aberrant in most of the normal responses to sulfur limitation; it cannot synthesize arylsulfatase, does not take up sulfate as rapidly as wild-type cells, and does not synthesize periplasmic proteins that normally accumulate during sulfur-limited growth. Here, we show that the sac1 mutant dies much more(More)
The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus(More)
Vibrios are natural inhabitants of aquatic environments and form symbiotic or pathogenic relationships with eukaryotic hosts. Recent studies reveal that the ability of vibrios to form biofilms (i.e. matrix-enclosed, surface-associated communities) depends upon specific structural genes (flagella, pili and exopolysaccharide biosynthesis) and regulatory(More)
The Sac3 gene product of Chlamydomonas positively and negatively regulates the responses of the cell to sulfur limitation. In wild-type cells, arylsulfatase activity is detected only during sulfur limitation. The sac3 mutant expresses arylsulfatase activity even when grown in nutrient-replete medium, which suggests that the Sac3 protein has a negative(More)
The rugose colonial variant of Vibrio cholerae O1 El Tor produces an exopolysaccharide (EPS(ETr)) that enables the organism to form a biofilm and to resist oxidative stress and the bactericidal action of chlorine. Transposon mutagenesis of the rugose variant led to the identification of vpsR, which codes for a homologue of the NtrC subclass of response(More)
Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded by rpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of(More)
Persistence of the opportunistic bacterial pathogen Vibrio cholerae in aquatic environments is the principal cause for seasonal occurrence of cholera epidemics. This causality has been explained by postulating that V. cholerae forms biofilms in association with animate and inanimate surfaces. Alternatively, it has been proposed that bacterial pathogens are(More)
Vibrio cholerae is a motile bacterium responsible for the disease cholera, and motility has been hypothesized to be inversely regulated with virulence. We examined the transcription profiles of V. cholerae strains containing mutations in flagellar regulatory genes (rpoN, flrA, flrC, and fliA) by utilizing whole-genome microarrays. Results revealed that(More)
In the absence of sulfur, Chlamydomonas reinhardtii, a unicellular green alga, lncreases its rate of sulfate import and synthesizes several periplasmic proteins, including an arylsulfatase (Ars). These changes appear to help cells acclimate to a sulfur-deficient envlronment. The elevated rate of sulfate import results from an increase in the capacity and(More)
In their natural environment, microbes organize into communities held together by an extracellular matrix composed of polysaccharides and proteins. We developed an in vivo labeling strategy to allow the extracellular matrix of developing biofilms to be visualized with conventional and superresolution light microscopy. Vibrio cholerae biofilms displayed(More)