Fiona Chan

  • Citations Per Year
Learn More
Voltage-gated sodium channels (VGSC) are attractive targets for drug discovery because of the broad therapeutic potential of their modulators. On the basis of the structure of marine alkaloid clathrodin, we have recently discovered novel subtype-selective VGSC modulators I and II that were used as starting points for two different ligand-based virtual(More)
Voltage-gated sodium channels play an integral part in neurotransmission and their dysfunction is frequently a cause of various neurological disorders. On the basis of the structure of marine alkaloid clathrodin, twenty eight new analogs were designed, synthesized and tested for their ability to block human NaV1.3, NaV1.4 and NaV1.7 channels, as well as for(More)
Clathrodin, alkaloid isolated from Agelas sponges, was reported in 1995 as a voltage-gated sodium channel modulator. Here we describe the design and synthesis of conformationally restricted clathrodin analogues incorporating the 4,5,6,7-tetrahydrobenzo[d]thiazol-2-amine moiety and evaluation of their modulatory activities on human voltage-gated sodium(More)
Sponges of the genus Agelas produce compounds that modulate the activity of voltage-gated sodium ion channels and contribute novel scaffolds for the development of compounds with activity against a plethora of biological targets. In particular, clathrodin and dibromosceptrin were reported to decrease the average maximum amplitude of inward sodium currents(More)
Starting from a naphthol-based lead series with low oral bioavailability, we have identified potent TRPV1 antagonists with oral bioavailability in rats. These compounds emerged from SAR studies aimed at replacing the lead's phenol structure whilst maintaining potency. Compound rac-6a is an orally available TRPV1 antagonist with single-digit nanomolar(More)
We have identified naphthol derivatives as inhibitors of the vanilloid receptor TRPV1 by high throughput screening. The initial lead showed high clearance in rats and has been optimized by enhancing the acidity of the phenol group. Compound 6b has reduced clearance, improved potency and is active in rat cystometry models of urinary incontinence after(More)
  • 1