Learn More
On consideration that intrinsic structural weakness could affect the segment spanning the alpha2-helical residues 173-195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala-scanned analogs of the peptide derived from the 180-195 C-terminal sequence, using a novel approach whose theoretical basis originates from protein(More)
CXCR4 is a G-protein-coupled receptor involved in a number of physiological processes in the hematopoietic and immune systems. CXCL12/CXCR4 axis plays a central role in diseases, such as HIV, cancer, WHIM syndrome, rheumatoid arthritis, pulmonary fibrosis, and lupus and, hence, indicated as putative therapeutic target. Although multiple CXCR4 antagonists(More)
The physiological form of the prion protein is normally expressed in mammalian cell and is highly conserved among species, although its role in cellular function remains elusive. Available evidence suggests that this protein is essential for neuronal integrity in the brain, possibly with a role in copper metabolism and cellular response to oxidative stress.(More)
Astins, antitumour cyclic pentapeptides, were isolated from the Aster tataricus. Their chemical structures, consist of a 16-membered ring system containing a unique beta,gamma-dichlorinated proline [Pro(Cl)2], other non-coded amino acid residues and a cis conformation in one of the peptide bonds. The astin backbone conformation, along with the cis peptide(More)
Astins, a family of cyclopentapeptides, isolated from the roots of a medicinal plant Aster tataricus (Compositae), show antitumour activity. Their chemical structures consist of a 16-membered ring system containing a unique beta,gamma-dichlorinated proline [Pro(Cl2)], other non-coded amino acid residues, and a cis conformation in one of the peptide bonds.(More)
The chemokines and their receptors play a key role in immune and inflammatory responses by promoting recruitment and activation of different subpopulations of leukocytes. The membrane receptor CXCR3 binds three chemokines, CXCL9, CXCL10, and CXCL11, and its involvement is recognized in many inflammatory diseases and cancers. Therefore, the inhibition of(More)
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum(More)
Prion diseases are characterized by the conversion of the physiological cellular form of the prion protein (PrP(C)) into an insoluble, partially protease-resistant abnormal scrapie form (PrP(Sc)). PrP(C) is normally expressed in mammalian cell and is highly conserved among species, although its role in cellular function remains elusive. The conversion of(More)
Both theoretical studies and direct experimental evidence have emphasized the importance of electrostatic interactions in the general phenomenon of spontaneous amyloid fibril formation. A number of observations have recently spurred interest in the contribution of these interactions to the conformational behavior of the prion protein. In this paper, we show(More)
The 173-195 segment corresponding to the helix 2 of the C-globular prion protein domain could be one of several "spots" of intrinsic conformational flexibility. In fact, it possesses chameleon conformational behaviour and gathers several disease-associated point mutations. We have performed spectroscopic studies on the wild-type fragment 173-195 and on its(More)