Filippo Menczer

Learn More
The widespread adoption of social media for political communication creates unprecedented opportunities to monitor the opinions of large numbers of politically active individuals in real time. However, without a way to distinguish between users of opposing political alignments, conflicting signals at the individual level may, in the aggregate, obscure(More)
In this study we investigate how social media shape the networked public sphere and facilitate communication between communities with different political orientations. We examine two networks of political communication on Twitter, comprised of more than 250,000 tweets from the six weeks leading up to the 2010 U.S. congressional midterm elections. Using a(More)
Topical crawlers are increasingly seen as a way to address the scalability limitations of universal search engines, by distributing the crawling process across users, queries, or even client computers. The context available to such crawlers can guide the navigation of links with the goal of efficiently locating highly relevant target pages. We developed a(More)
The wide adoption of social media has increased the competition among ideas for our finite attention. We employ a parsimonious agent-based model to study whether such a competition may affect the popularity of different memes, the diversity of information we are exposed to, and the fading of our collective interests for specific topics. Agents share(More)
Social bookmarking systems are becoming increasingly important data sources for bootstrapping and maintaining Semantic Web applications. Their emergent information structures have become known as folksonomies. A key question for harvesting semantics from these systems is how to extend and adapt traditional notions of similarity to folksonomies, and which(More)
Feature subset selection is an important problem in knowledge discovery, not only for the insight gained from determining relevant modeling variables but also for the improved understandability, scalabilit y, and possibly , accuracy of the resulting models. In this paper w e consider the problem of feature selection for unsupervised learning. A number of(More)
We study astroturf political campaigns on microblogging platforms: politically-motivated individuals and organizations that use multiple centrally-controlled accounts to create the appearance of widespread support for a candidate or opinion. We describe a machine learning framework that combines topological, content-based and crowdsourced features of(More)
Web 2.0 applications have attracted a considerable amount of attention because their open-ended nature allows users to create lightweight semantic scaffolding to organize and share content. To date, the interplay of the social and semantic components of social media has been only partially explored. Here we focus on Flickr and Last.fm, two social media(More)