Filippo Giannazzo

Learn More
Dynamic scaling behavior has been observed during the room-temperature growth of sputtered Au films on SiO2using the atomic force microscopy technique. By the analyses of the dependence of the roughness, σ, of the surface roughness power,P(f), and of the correlation length,ξ, on the film thickness,h, the roughness exponent,α = 0.9 ± 0.1, the growth(More)
In this work, we present a nanometer resolution structural characterization of epitaxial graphene (EG) layers grown on 4H-SiC (0001) 8° off-axis, by annealing in inert gas ambient (Ar) in a wide temperature range (Tgr from 1600 to 2000°C). For all the considered growth temperatures, few layers of graphene (FLG) conformally covering the 100 to 200-nm wide(More)
This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM],(More)
The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs), with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM) and conductive(More)
We report on the calculations of the cohesive energy, melting temperature and vacancy formation energy for Au nanocrystals with different size supported on and embedded in SiO2. The calculations are performed crossing our previous data on the surface free energy of the supported and embedded nanocrystals with the theoretical surface-area-difference model(More)
Cover Atomic force microscopy topographic image of graphene on C-face 4H-SiC(000-1) grown by high-temperature sublimation in argon atmosphere. Je dédie cette thèse pour ceux qui sont très loin de moi et très prochesà mon coeur: Pour celle qui vient de l'ˆ ıle des rêves et qui a changè ma vie au plus beau rêve. Pour celle que je dois ma vie. Pour ma famille.(More)
This special issue of Nanoscale Research Letters contains scientific contributions presented at the Symposium D "Multidimensional Electrical and Chemical Characterization at the Nanometer-scale of Organic and Inorganic Semiconductors" of the E-MRS Fall Meeting 2010, which was held in Warsaw, Poland from 13th to 17th September, 2010.
Self-assembled iron-silicide nanostructures were prepared by reactive deposition epitaxy of Fe onto silicon. Capacitance-voltage, current-voltage, and deep level transient spectroscopy (DLTS) were used to measure the electrical properties of Au/silicon Schottky junctions. Spreading resistance and scanning probe capacitance microscopy (SCM) were applied to(More)
Semiconducting CrSi2 nanocrystallites (NCs) were grown by reactive deposition epitaxy of Cr onto n-type silicon and covered with a 50-nm epitaxial silicon cap. Two types of samples were investigated: in one of them, the NCs were localized near the deposition depth, and in the other they migrated near the surface. The electrical characteristics were(More)
In this work, the transport properties of metal/3C-SiC interfaces were monitored employing a nanoscale characterization approach in combination with conventional electrical measurements. In particular, using conductive atomic force microscopy allowed demonstrating that the stacking fault is the most pervasive, electrically active extended defect at(More)