Learn More
the mode occurs at f cut-o = 5 GHz. Fig. 2(a) (f = 10 GHz) and Fig. 2(b) (f = 2 GHz), show the radiated field for frequencies above and below the cutoff, respectively. In both cases, the line integration (continuous line) and the surface integrations (dots) lead to identical results in the limit of the numerical precision. In conclusion, the rigorous(More)
The Ewald method is applied to accelerate the evaluation of the Green's function (GF) of an infinite equispaced linear array of point sources with linear phasing. Only a few terms are needed to evaluate Ewald sums, which are cast in terms of error functions and exponential integrals, to high accuracy. It is shown analytically that the choice of the standard(More)
The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical(More)
[1] Accurate and efficient computation of periodic free-space Green's functions using the Ewald method is considered for three cases: a 1-D array of line sources, a 1-D array of point sources, and a 2-D array of point sources. A limitation on the numerical accuracy when using the ''optimum'' E parameter (which gives optimum asymptotic convergence) at high(More)
In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited(More)
We show that the enhanced directivity phenomenon for light passing through a subwavelength aperture in a silver film with corrugations on the exit face, is due to a leaky wave that decays exponentially from the aperture. We show quantitatively that the field along the interface of the silver film is dominated by the leaky wave, and that the radiation of the(More)
We theoretically investigate the spectral and localization properties of two-dimensional (2D) deterministic aperiodic (DA) arrays of photonic nanopillars characterized by singular continuous (Thue-Morse sequence) and absolutely continuous (Rudin-Shapiro sequence) Fourier spectra. A rigorous and efficient numerical technique based on the 2D Generalized(More)