Learn More
While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson’s disease–like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to(More)
Considering that intracellular signaling pathways that modulate brain BDNF are implicated in antidepressant responses, this study investigated whether signaling pathway inhibitors upstream to BDNF might influence the antidepressant-like effect of zinc, a metal that has been shown to display antidepressant properties. To this end, the influence of i.c.v.(More)
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more(More)
Disturbances in glutamatergic transmission and signaling pathways have been associated with temporal lobe epilepsy (TLE) in humans. However, the profile of these alterations within specific regions of the hippocampus and cerebral cortex has not yet been examined. The pilocarpine model in rodents reproduces the main features of TLE in humans. The present(More)
Manganese (Mn) is an essential trace element required for a range of physiological processes, but Mn can also be neurotoxic especially during development. Excess levels of Mn accumulate preferentially in the striatum and can induce a syndrome called manganism, characterized by an initial stage of psychiatric disorder followed by motor impairment. In the(More)
Epilepsy is a brain function disorder characterized by unpredictable and recurrent seizures. The majority of patients with temporal lobe epilepsy (TLE), which is the most common type of epilepsy, have to live not only with seizures but also with behavioral alterations, including anxiety, psychosis, depression, and impaired cognitive functioning. The(More)
The excitotoxicity induced by excessive activation of the glutamatergic neurotransmission pathway is involved in several neuropathologies. In this sense, molecules that prevent the release of glutamate or the excessive activation of its receptors can be useful in preventing the neuronal cell death observed in these diseases. Lectins are proteins capable of(More)
Exposure to high manganese (Mn) levels may damage the basal ganglia, leading to a syndrome analogous to Parkinson's disease, with motor and cognitive impairments. The molecular mechanisms underlying Mn neurotoxicity, particularly during development, still deserve further investigation. Herein, we addressed whether early-life Mn exposure affects motor(More)
Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial(More)
Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase(More)