Learn More
The site and regulation of neurotrophic factor release from neurons is poorly understood. We used a combination of model cell lines and primary culture systems to study the polarity of BDNF sorting and the regulation of its release from hippocampal neurons. Transfection and expression of a human BDNF cDNA in a mouse pituitary cell line, AtT20, resulted in(More)
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains while selectively allowing transport of proteins and lipids from one pole to the opposite by transcytosis. The small GTPase, rab17, a member of the rab family of regulators of intracellular(More)
The tauopathies, which include Alzheimer's disease (AD) and frontotemporal dementias, are a group of neurodegenerative disorders characterized by filamentous Tau aggregates. That Tau dysfunction can cause neurodegeneration is indicated by pathogenic tau mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). To investigate(More)
Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid(More)
A continuous normal function of olfactory ensheathing glia (OEG) is to promote axonal regeneration from the olfactory neuroepithelium to the brain, and their neuroregenerative potential in other CNS sites such as the injured spinal cord has been studied for over a decade. However, human OEG are difficult to obtain in large amounts directly from tissues, and(More)
It has been extensively described that neuronal differentiation involves the signalling through neurotrophin receptors to a Ras-dependent mitogen-activated protein kinase (MAPK) cascade. However, signalling pathways from other neuritogenic factors have not been well established. It has been reported that cAMP may activate protein kinase (PKA), and it has(More)
During all the life of a mammal, olfactory ensheathing glia (OEG) permit the entry and navigation of olfactory neuron axons from peripheral to central nervous system (CNS) territory. This physiological characteristic of OEG has been successfully used for promotion of axonal regeneration after CNS injury in animal models. However, cellular and molecular(More)
Immortalized cell lines of olfactory ensheathing glia (OEG) that maintain the proregenerative properties of primary cultures provide an unlimited source of OEG for both basic and applied studies. Indeed, one specific immortalized rat OEG clonal line (TEG3) proved to be as good as primary OEG in promoting neuritogenesis and axon regeneration in culture(More)
Olfactory bulb ensheathing glia (OEG) have attracted special attention during the last few years because of their unique properties in promoting regeneration of adult mammalian central nervous system (CNS) components. However the molecular and cellular characteristics responsible for this capacity remain to be revealed. Such studies are presently hindered(More)
Purkinje cells play a crucial role in sensory motor coordination since they are the only output projection neurons in the cerebellar cortex and are affected in most spinocerebellar ataxias. They stand out in the central nervous system due to their large size and their profusely branched dendritic arbor. However, molecular and cellular studies on Purkinje(More)