#### Filter Results:

#### Publication Year

2003

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Brain Region

#### Cell Type

#### Method

#### Organism

Learn More

In vivo measurements of equivalent resistivities of skull (rho(skull)) and brain (rho(brain)) are performed for six subjects using an electric impedance tomography (EIT)-based method and realistic models for the head. The classical boundary element method (BEM) formulation for EIT is very time consuming. However, the application of the Sherman-Morrison… (More)

Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity is difficult to determine experimentally. Current computational methods for estimating connectivity typically… (More)

The standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is… (More)

- Fetsje Bijma, Jan C de Munck, Hilde M Huizenga, Rob M Heethaar
- NeuroImage
- 2003

The general spatiotemporal covariance matrix of the background noise in MEG/EEG signals is huge. To reduce the dimensionality of this matrix it is modeled as a Kronecker product of a spatial and a temporal covariance matrix. When the number of time samples is larger than, say, J = 500, the iterative Maximum Likelihood estimation of these two matrices is… (More)

The single Kronecker product (KP) model for the spatiotemporal covariance of MEG residuals is extended to a sum of Kronecker products. This sum of KP is estimated such that it approximates the spatiotemporal sample covariance best in matrix norm. Contrary to the single KP, this extension allows for describing multiple, independent phenomena in the ongoing… (More)

The inverse problem of multi-channel MEG/EEG data is considered as a parameter estimation problem. The stability of the solution of the inverse problem, which decreases with the number of included dipoles, can be improved by either adding constraints to the model parameters, or by adding more data of related data sets. The latter approach was taken by Bijma… (More)

- Fetsje Bijma, Jan C De Munck, Hilde M Huizenga, Rob M Heethaar, Arye Nehorai
- 2005

—The proposed Extended Couple Dipole Model (ECDM) is a trilinear component model that can be used to analyze multiple, related MEG data sets simultaneously. Related MEG data sets are data sets that contain activity of the same sources or activity of sources that have proportional source amplitudes. The simultaneous model uses a set of common sources and a… (More)

- Fetsje Bijma, Jan C de Munck, Koen B E Böcker, Hilde M Huizenga, Rob M Heethaar
- NeuroImage
- 2004

Often MEG/EEG is measured in a few slightly different conditions to investigate the functionality of the human brain. This kind of data sets show similarities, though are different for each condition. When solving the inverse problem (IP), performing the source localization, one encounters the problem that this IP is ill-posed: constraints are necessary to… (More)

Neuronal signal integration and information processing in cortical networks critically depend on the organization of synaptic connectivity. During development, neurons can form synaptic connections when their axonal and dendritic arborizations come within close proximity of each other. Although many signaling cues are thought to be involved in guiding… (More)