Fetsje Bijma

Learn More
In vivo measurements of equivalent resistivities of skull (rho(skull)) and brain (rho(brain)) are performed for six subjects using an electric impedance tomography (EIT)-based method and realistic models for the head. The classical boundary element method (BEM) formulation for EIT is very time consuming. However, the application of the Sherman-Morrison(More)
The standard procedure to determine the brain response from a multitrial evoked magnetoencephalography (MEG) or electroencephalography (EEG) data set is to average the individual trials of these data, time locked to the stimulus onset. When the brain responses vary from trial-to-trial this approach is false. In this paper, a maximum-likelihood estimator is(More)
The general spatiotemporal covariance matrix of the background noise in MEG/EEG signals is huge. To reduce the dimensionality of this matrix it is modeled as a Kronecker product of a spatial and a temporal covariance matrix. When the number of time samples is larger than, say, J = 500, the iterative Maximum Likelihood estimation of these two matrices is(More)
The single Kronecker product (KP) model for the spatiotemporal covariance of MEG residuals is extended to a sum of Kronecker products. This sum of KP is estimated such that it approximates the spatiotemporal sample covariance best in matrix norm. Contrary to the single KP, this extension allows for describing multiple, independent phenomena in the ongoing(More)
In this paper, we use co-registered EEG-fMRI during rest to investigate inter-subject-variability of BOLD signals in comparison with alpha-BOLD statistical parametric maps. A hierarchical clustering algorithm is used to detect spatial patterns of voxels showing correlated activity. The generallinear model is used to determine which of the identified(More)
Often MEG/EEG is measured in a few slightly different conditions to investigate the functionality of the human brain. This kind of data sets show similarities, though are different for each condition. When solving the inverse problem (IP), performing the source localization, one encounters the problem that this IP is ill-posed: constraints are necessary to(More)
Neuronal signal integration and information processing in cortical networks critically depend on the organization of synaptic connectivity. During development, neurons can form synaptic connections when their axonal and dendritic arborizations come within close proximity of each other. Although many signaling cues are thought to be involved in guiding(More)
Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity is difficult to determine experimentally. Current computational methods for estimating connectivity typically(More)
OBJECTIVE Synchronization between distributed rhythms in the brain is commonly assessed by estimating the synchronization strength from simultaneous measurements. This approach, however, does not elucidate the phase dynamics that underlies synchronization. For this, an explicit dynamical model is required. Based on the assumption that the recorded rhythms(More)