Fethi Bougares

Learn More
In this paper, we propose a novel neural network model called RNN Encoder– Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixedlength vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained(More)
This paper describes the three systems developed by the LIUM for the IWSLT 2011 evaluation campaign. We participated in three of the proposed tasks, namely the Automatic Speech Recognition task (ASR), the ASR system combination task (ASR_SC) and the Spoken Language Translation task (SLT), since these tasks are all related to speech translation. We present(More)
Recent works on end-to-end neural network-based architectures for machine translation have shown promising results for English-French and English-German translation. Unlike these language pairs, however, in the majority of scenarios, there is a lack of high quality parallel corpora. In this work, we focus on applying neural machine translation to(More)
This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate the usefulness of(More)
We present a new approach for neural machine translation (NMT) using the morphological and grammatical decomposition of the words (factors) in the output side of the neural network. This architecture addresses two main problems occurring in MT, namely dealing with a large target language vocabulary and the out of vocabulary (OOV) words. By the means of(More)
In this paper we present the LIUM (Laboratoire d’Informatique de l’Universit du Maine) and CMU-Q (Carnegie Mellon University in Qatar) joint submission in the Arabic shared task on automatic spelling error correction. Our best system is a sequential combination of two statistical machine translation systems (SMT) trained on top of the MADAMIRA output. The(More)
This paper describes the LIG experiments in the context of IWSLT09 evaluation (Arabic to English Statistical Machine Translation task). Arabic is a morphologically rich language, and recent experimentations in our laboratory have shown that the performance of Arabic to English SMT systems varies greatly according to the Arabic morphological segmenters(More)
We describe our systems for Tasks 1 and 2 of the WMT15 Shared Task on Quality Estimation. Our submissions use (i) a continuous space language model to extract additional features for Task 1 (SHEFGP, SHEF-SVM), (ii) a continuous bagof-words model to produce word embeddings as features for Task 2 (SHEF-W2V) and (iii) a combination of features produced by(More)