Learn More
We developed and tested a set of oligonucleotide primers for the specific amplification of 16S rRNA gene segments from cyanobacteria and plastids by PCR. PCR products were recovered from all cultures of cyanobacteria and diatoms that were checked but not from other bacteria and archaea. Gene segments selectively retrieved from cyanobacteria and diatoms in(More)
We compared the community structures of cyanobacteria in four biological desert crusts from Utah's Colorado Plateau developing on different substrata. We analyzed natural samples, cultures, and cyanobacterial filaments or colonies retrieved by micromanipulation from field samples using microscopy, denaturing gradient gel electrophoresis, and sequencing of(More)
The UV sunscreen role commonly ascribed to mycosporine-like amino acids (MAAs) was investigated with an isolate of the terrestrial cyanobacterium Gloeocapsa sp. strain C-90-Cal-G.(2), which accumulates intracellularly an MAA with absorbance maximum at 326 nm but produces no extracellular sunscreen compound (i.e., scytonemin). The intracellular(More)
We examined the morphology, physiology, and 16S rRNA gene sequences of three culture collection strains and of ten novel isolates of unicellular cyanobacteria from hypersaline environments. The strains were morphologically diverse, with average cell widths ranging from 2.8 to 10.3 μm. There were single-celled, colonial, and baeocyte-forming strains.(More)
A survey of 20 strains of cyanobacteria (belonging to 13 genera) isolated from habitats exposed to strong insolation revealed that 13 strains contained one or more water-soluble, UV-absorbing, mycosporine amino acid (MAA)-like compounds. Some of the compounds were identical in several strains. In all, 13 distinct compounds were found. The UV absorption(More)
The proposed photoprotective role of the UV-A absorbing, extracellular pigment scytonemin was studied in the terrestrial cyanobacterium Chlorogloeopsis sp. strain O-89-Cgs(1). UV-A (315-400 nm) caused growth delay, cell growth restarting only when scytonemin had accumulated in the extracellular envelopes. Cultures with scytonemin were more resistant to(More)
We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations,(More)
We used micromanipulation to isolate from their environment representative samples of seven geographically distant field populations fitting the description of Microcoleus chthonoplastes (a cyanobacterium) and obtained seven corresponding cultured strains. Samples of both field populations and cultures were phenotypically characterized by microscale(More)
We quantified the diversity of oxygenic phototrophic microorganisms present in eight hypersaline microbial mats on the basis of three cultivation-independent approaches. Morphological diversity was studied by microscopy. The diversity of carotenoids was examined by extraction from mat samples and high-pressure liquid chromatography analysis. The diversity(More)
Despite knowledge of the existence of the pigment called scytonemin for over 100 years, its structure has remained unsolved until now. This pigment, the first shown to be an effective, photo-stable ultraviolet shield in prokaryotes, is a novel dimeric molecule (molec. wt. 544) of indolic and phenolic subunits and is known only from the sheaths enclosing the(More)