Fernando Valiente-Echeverría

Learn More
The 5' leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA harbors an internal ribosome entry site (IRES) that is functional during the G2/M phase of the cell cycle. Here we show that translation initiation mediated by the HIV-1 IRES requires the participation of trans-acting cellular factors other than the canonical translational(More)
Stress granules (SG) are translationally silent sites of RNA triage induced by environmental stresses including viral infection. Here we show that HIV-1 Gag blocks SG assembly irrespective of eIF2α phosphorylation and even when SG assembly is forced by overexpression of Ras-GAP SH3 domain-binding protein (G3BP1) or TIAR. The overexposed loops in the(More)
In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5'-untranslated region (5'-UTR) of the mouse mammary tumor virus (MMTV). The 5'-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene(More)
The precursor group-specific antigen (pr55(Gag)) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral(More)
Translation initiation from the human immunodeficiency virus type-1 (HIV-1) mRNA can occur through a cap or an IRES dependent mechanism. Cap-dependent translation initiation of the HIV-1 mRNA can be inhibited by the instability element (INS)-1, a cis-acting regulatory element present within the gag open reading frame (ORF). In this study we evaluated the(More)
During the post-transcriptional events of the HIV-2 replication cycle, the full-length unspliced genomic RNA (gRNA) is first used as an mRNA to synthesize Gag and Gag-Pol proteins and then packaged into progeny virions. However, the mechanisms responsible for the coordinate usage of the gRNA during these two mutually exclusive events are poorly understood.(More)
After viral infection, host cells respond by mounting an anti-viral stress response in order to create a hostile atmosphere for viral replication, leading to the shut-off of mRNA translation (protein synthesis) and the assembly of RNA granules. Two of these RNA granules have been well characterized in yeast and mammalian cells, stress granules (SGs), which(More)
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present.(More)
The human immunodeficiency virus type 1 (HIV-1) Gag polyprotein is necessary and sufficient to assemble non-infectious particles. Given that HIV-1 subverts many host proteins at all stages of its life cycle, it is essential to identify these interactions as potential targets for antiretroviral therapy. This work demonstrates the use of proximity-dependent(More)
  • 1