Fernando Ulloa-Montoya

Learn More
Recently, several populations of postnatal stem cells, such as multipotent adult progenitor cells (MAPCs), have been described that have broader differentiation ability than classical adult stem cells. Here we compare the transcriptome of pluripotent embryonic stem cells (ESCs), MAPCs, and lineage-restricted mesenchymal stem cells (MSCs) to determine their(More)
Several adherent postnatal stem cells have been described with different phenotypic and functional properties. As many of these cells are being considered for clinical therapies, it is of great importance that the identity and potency of these products is validated. We compared the phenotype and functional characteristics of human mesenchymal stem cells(More)
Multipotent adult progenitor cells (MAPCs) are adult stem cells derived from the bone marrow of mouse and rat and were described for the first time in 2002 (Jiang et al., Nature 418:41-49, 2002), and subsequently (Breyer et al., Exp Hematol 34:1596-1601, 2006; Jiang et al., Exp Hematol 30:896-904, 2002; Ulloa-Montoya et al., Genome Biol 8:R163, 2007). The(More)
Because of their ability to self-renew and differentiate, adult stem cells are the in vivo source for replacing cells lost on a daily basis in high turnover tissues during the life of an organism. Adult stem cells however, do suffer the effects of aging resulting in decreased ability to self-renew and properly differentiate. Aging is a complex process and(More)
Pluripotent stem cells have the capacity to self renew and to differentiate to cells of the three somatic germ layers that comprise an organism. Embryonic stem cells are the most studied pluripotent stem cells. Pluripotent stem cells have also been derived from adult tissues. Both embryonic and adult stem cells represent valuable sources of cells for(More)
As recent studies suggest that newly formed pancreatic beta-cells are a result of self-duplication rather than stem cell differentiation, in vitro expansion of beta-cells presents a potential mechanism by which to increase available donor tissue for cell-based diabetes therapies. Although most studies have found that beta-cells are resilient to substantial(More)
OBJECTIVE The microenvironment wherein hematopoietic stem cells (HSC) reside orchestrates HSC self-renewal vs. differentiation decisions. Stromal cells derived from ontogenically divergent hematopoietic microenvironments can support HSC in vitro and have been used to decipher factors that influence HSC fate decisions. Employing stromal cell lines derived(More)
Dear Editor, We previously demonstrated (Jiang et al., 2002) that rodent multipotent adult progenitor cells (MAPC) can self-renew longterm while maintaining multilineage differentiation capacity. Rodent MAPC express a number of pluripotency-related transcription factors (TF) including Oct4 and Rex1 but not Nanog and Sox2, two other TF known to play a(More)
The kidney has a high capacity to regenerate after ischemic injury via several mechanisms, one of which involves bone marrow-derived (stem) cells. The ATP binding cassette transporters, P-glycoprotein and breast cancer resistance protein, are determinants for the enriched stem and progenitor cell fraction in bone marrow. Because they are upregulated after(More)
  • 1