Learn More
We present a new algorithm for the numerical solution of problems of electromagnetic or acoustic scattering by large, convex obstacles. This algorithm combines the use of an ansatz for the unknown density in a boundary-integral formulation of the scattering problem with an extension of the ideas of the method of stationary phase. We include numerical(More)
We present new, stabilized shape-perturbation methods for calculations of scattering from rough surfaces. For practical purposes, we present new algorithms for both low- (first- and second-) and high-order implementations. The new schemes are designed with guidance from our previous results that uncovered the basic mechanism behind the instabilities that(More)
We analyze the conditioning properties of classical shape-perturbation methods for the prediction of scattering returns from rough surfaces. A central observation relates to the identification of significant cancellations that are present in the recurrence relations satisfied by successive terms in a perturbation series. We show that these cancellations are(More)
This paper presents a high-order accelerated algorithm for the solution of the integral-equation formulation of volumetric scattering problems. The scheme is particularly well suited to the analysis of "thin" structures as they arise in certain applications (e.g., material coatings); in addition, it is also designed to be used in conjunction with existing(More)
The analytic dependence of Dirichlet-Neumann operators (DNO) with respect to variations of their domain of definition has been successfully used to devise diverse computational strategies for their estimation. These strategies have historically proven very competitive when dealing with small deviations from exactly solvable geometries, as in this case the(More)
In this talk, we devise a new Runge-Kutta Discontinuous Galerkin (RKDG) method that achieves full high-order convergence in time and space while keeping the time-step proportional to the spatial mesh-size. To this end, we derive an extension to non-autonomous linear systems of the mth-order, m-stage strong stability preserving Runge-Kutta (SSP-RK) scheme(More)
We present an analysis of a recently proposed integral-equation method for the solution of high-frequency electromagnetic and acoustic scattering problems that delivers error-controllable solutions in frequency-independent computational times. Within single scattering configurations the method is based on the use of an appropriate ansatz for the unknown(More)
Despite significant recent advances in numerical methodologies for simulating rough-surface acoustic scattering, their applicability has been constrained by the limitations of state-of-the-art computational resources. This has been particularly true in high-frequency applications where the sheer size of the full-wave simulations render them impractical, and(More)
A new method for the reconstruction of two-dimensional periodic structures from scattered far-eld data is presented. The approach is based on the recently developed \Methods of Variation of Boundaries" (MVB) for the solution of forward scattering problems. Here, the inverse problem is formulated as that of minimization of an appropriate nonlinear(More)
In this paper we continue our analysis of the treatment of multiple scattering effects within a recently proposed methodology, based on integral-equations, for the numerical solution of scattering problems at high frequencies. In more detail, here we extend the two-dimensional results in part I of this work to fully three-dimensional geometries. As in the(More)