Learn More
Transforming growth factor beta (TGF beta) signals through a heteromeric protein kinase receptor that has a limited ability to bind ligand. This limitation is overcome by the action of betaglycan (TGF beta type III receptor), a separate TGF beta-binding membrane protein of previously unknown function. Betaglycan presents TGF beta directly to the kinase(More)
We describe the primary structure of rat betaglycan, a polymorphic membrane-anchored proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). As deduced from its cDNA sequence, the 853 amino acid core protein of betaglycan has an extracellular domain with clustered sites for potential attachment of glycosaminoglycan chains. These(More)
Acetyl-CoA carboxylase [acetyl-CoA:carbondioxide ligase (ADP-forming), EC 6.4.1.2] is the rate-limiting enzyme in the biogenesis of long-chain fatty acids. We have previously characterized five acetyl-CoA carboxylase mRNA species that differ in their 5' untranslated regions but not in the coding region. We have now characterized the exon-intron structure of(More)
BACKGROUND Transforming growth factor beta (TGFbeta) over-expression in prostate cancer has been shown to promote tumor progression and neo-vascularization. In this study, we have investigated the efficacy and the potential mechanism of a TGFbeta antagonist, a recombinant soluble betaglycan (sBG), as a prostate cancer therapeutic agent after systemic(More)
Betaglycan, also known as the TGF-beta type III receptor, is a membrane-anchored proteoglycan that presents TGF-beta to the type II signaling receptor, a transmembrane serine/threonine kinase. The betaglycan extracellular region, which can be shed by cells into the medium, contains a NH2-terminal domain related to endoglin and a COOH-terminal domain related(More)
The Taenia crassiceps recombinant antigen KETc7 has been shown to be effective as a vaccine against experimental murine cysticercosis, a laboratory model used to test potentially promising molecules against porcine Taenia solium cysticercosis. Based on the deduced amino acid sequence of this proline-rich polypeptide, three fragments, GK-1, GK-2, and GK-3,(More)
Taenia crassiceps recombinant antigens KETc1 and KETc12 have been shown to induce high level of protection against experimental murine T. crassiceps cysticercosis, an experimental model successfully used to test candidate antigens for use in vaccination against porcine Taenia solium cysticercosis. Based on the deduced amino acid sequence, KETc1 and KETc12(More)
Cysticercosis caused by Taenia solium frequently affects human health and rustic porciculture. Cysticerci may localize in the central nervous system of humans causing neurocysticercosis, a major health problem in undeveloped countries. Prevalence and intensity of this disease in pigs and humans are related to social factors (poor personal hygiene, low(More)
Transforming growth factor-beta (TGFbeta) isoforms initiate signaling by assembling a heterotetrameric complex of paired type I (TbetaRI) and type II (TbetaRII) receptors on the cell surface. Because two of the ligand isoforms (TGFbetas 1, 3) must first bind TbetaRII to recruit TbetaRI into the complex, and a third (TGFbeta2) requires a co-receptor,(More)
Transforming growth factor (TGF)-βs are dimeric polypeptides that have vital roles in regulating cell growth and differentiation. They signal by assembling a receptor heterotetramer composed of two TβRI:TβRII heterodimers. To investigate whether the two heterodimers bind and signal autonomously, one of the TGF-β protomers was substituted to block receptor(More)