Fernando López-Casillas

Learn More
Transforming growth factor beta (TGF beta) signals through a heteromeric protein kinase receptor that has a limited ability to bind ligand. This limitation is overcome by the action of betaglycan (TGF beta type III receptor), a separate TGF beta-binding membrane protein of previously unknown function. Betaglycan presents TGF beta directly to the kinase(More)
Betaglycan, also known as the TGF-beta type III receptor, is a membrane-anchored proteoglycan that presents TGF-beta to the type II signaling receptor, a transmembrane serine/threonine kinase. The betaglycan extracellular region, which can be shed by cells into the medium, contains a NH2-terminal domain related to endoglin and a COOH-terminal domain related(More)
We describe the primary structure of rat betaglycan, a polymorphic membrane-anchored proteoglycan with high affinity for transforming growth factor-beta (TGF-beta). As deduced from its cDNA sequence, the 853 amino acid core protein of betaglycan has an extracellular domain with clustered sites for potential attachment of glycosaminoglycan chains. These(More)
Betaglycan is a membrane-anchored proteoglycan that binds transforming growth factor-beta (TGF-beta) via its core protein. A soluble form of betaglycan can be released by proteolytic cleavage (also known as shedding) of the membrane-bound form, yielding soluble betaglycan. The mechanism leading to the generation of soluble betaglycan is poorly understood.(More)
Acetyl-CoA carboxylase, the rate-limiting enzyme in the biogenesis of long-chain fatty acids, is regulated by phosphorylation and dephosphorylation. The major phosphorylation sites that affect carboxylase activity and the specific protein kinases responsible for phosphorylation of different sites have been identified. A form of acetyl-CoA carboxylase that(More)
Betaglycan is an accessory receptor of members of the transforming growth factor-beta (TGF-beta) superfamily, which regulates their actions through ligand-dependent interactions with type II receptors. A natural soluble form of betaglycan is found in serum and extracellular matrices. Soluble betaglycan, prepared as a recombinant protein using the(More)
The use of transgenic plants as new antigen-delivery systems for subunit vaccines has been increasingly explored. We herein report progress toward a papaya-based vaccine against cysticercosis. Synthetic peptides (KETc1, KETc12, KETc7) were successfully expressed in 19 different transgenic papaya clones and found to be immunogenic. Complete protection(More)
Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F.,(More)
Transforming growth factor-beta (TGFbeta) isoforms initiate signaling by assembling a heterotetrameric complex of paired type I (TbetaRI) and type II (TbetaRII) receptors on the cell surface. Because two of the ligand isoforms (TGFbetas 1, 3) must first bind TbetaRII to recruit TbetaRI into the complex, and a third (TGFbeta2) requires a co-receptor,(More)