#### Filter Results:

#### Publication Year

1999

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Data Set Used

Learn More

This paper summarizes the research on population-based probabilistic search algorithms based on modeling promising solutions by estimating their probability distribution and using the constructed model to guide the exploration of the search space. It settles the algorithms in the field of genetic and evolutionary computation where they have been originated,… (More)

—This paper introduces the compact genetic algorithm (cGA) which represents the population as a probability distribution over the set of solutions and is operationally equivalent to the order-one behavior of the simple GA with uniform crossover. It processes each gene independently and requires less memory than the simple GA. The development of the compact… (More)

From the user's point of view, setting the parameters of a genetic algorithm (GA) is far from a trivial task. Moreover, the user is typically not interested in population sizes, crossover probabilities, selection rates, and other GA technicalities. He is just interested in solving a problem, and what he would really like to do, is to hand-in the problem to… (More)

This paper studies the utility of using substructural neighborhoods for local search in the Bayesian optimization algorithm (BOA). The probabilistic model of BOA, which automatically identifies important problem substructures, is used to define the structure of the neighborhoods used in local search. Additionally, a surrogate fitness model is considered to… (More)

This paper explores an idealized dynamic population sizing strategy for solving additive decomposable problems of uniform scale. The method is designed on top of the foundations of existing population sizing theory for this class of problems, and is carefully compared with an optimal fixed population sized genetic algorithm. The resulting strategy should be… (More)

This paper presents a local search method for the Bayesian optimization algorithm (BOA) based on the concepts of substructural neighborhoods and loopy belief propagation. The proba-bilistic model of BOA, which automatically identifies important problem substructures, is used to define the topology of the neighborhoods explored in local search. On the other… (More)

This paper investigates the incorporation of restricted tournament replacement (RTR) in the extended compact genetic algorithm (ECGA) for solving problems with non-stationary optima. RTR is a simple yet efficient niching method used to maintain diversity in a population of individuals. While the original version of RTR uses Hamming distance to quantify… (More)

The parameter-less genetic algorithm was introduced a couple of years ago as a way to simplify genetic algorithm operation by incorporating knowledge of parameter selection and population sizing theory in the genetic algorithm itself. This paper shows how that technique can be used in practice by applying it to a network expansion problem. The existence of… (More)

This paper reviews the topic of population sizing in genetic algorithms. It starts by revisiting theoretical models which rely on a facetwise decomposition of genetic algorithms, and then moves on to various self-adjusting population sizing schemes that have been proposed in the literature. The paper ends with recommendations for those who design and… (More)