Fernando De la Torre

Learn More
Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved through a nonlinear optimization method. It is generally accepted that 2nd order descent methods are the most robust, fast and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, 2nd(More)
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace(More)
Principal Component Analysis (PCA) has been widely used for the representation of shape, appearance, and motion. One drawback of typical PCA methods is that they are least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. In computer vision applications, outliers typically occur within a(More)
Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the(More)
Graph matching plays a central role in solving correspondence problems in computer vision. Graph matching problems that incorporate pair-wise constraints can be cast as a quadratic assignment problem (QAP). Unfortunately, QAP is NP-hard and many algorithms have been proposed to solve different relaxations. This paper presents factorized graph matching(More)
The face is one of the most powerful channels of nonverbal communication. Facial expression provides cues about emotion, intention, alertness, pain, personality, regulates interpersonal behavior, and communicates psychiatric and biomedical status among other functions. Within the past 15 years, there has been increasing interest in automated facial(More)
The need for early detection of temporal events from sequential data arises in a wide spectrum of applications ranging from human-robot interaction to video security. While temporal event detection has been extensively studied, early detection is a relatively unexplored problem. This paper proposes a maximum-margin framework for training temporal event(More)
Automatic video segmentation and action recognition has been a long-standing problem in computer vision. Much work in the literature treats video segmentation and action recognition as two independent problems; while segmentation is often done without a temporal model of the activity, action recognition is usually performed on pre-segmented clips. In this(More)
Temporal segmentation of human motion into actions is central to the understanding and building of computational models of human motion and activity recognition. Several issues contribute to the challenge of temporal segmentation and classification of human motion. These include the large variability in the temporal scale and periodicity of human actions,(More)