Learn More
Diffusion-weighted (DW) MR images contain information about the orientation of brain white matter fibres that potentially can be used to study human brain connectivity in vivo using tractography techniques. Currently, the diffusion tensor model is widely used to extract fibre directions from DW-MRI data, but fails in regions containing multiple fibre(More)
Diffusion-weighted magnetic resonance imaging can provide information related to the arrangement of white matter fibers. The diffusion tensor is the model most commonly used to derive the orientation of the fibers within a voxel. However, this model has been shown to fail in regions containing several fiber populations with distinct orientations. A number(More)
In recent years, diffusion-weighted magnetic resonance imaging has attracted considerable attention due to its unique potential to delineate the white matter pathways of the brain. However, methodologies currently available and in common use among neuroscientists and clinicians are typically based on the diffusion tensor model, which has comprehensively(More)
Diffusion-weighted imaging can potentially be used to infer the connectivity of the human brain in vivo using fibre-tracking techniques, and is therefore of great interest to neuroscientists and clinicians. A key requirement for fibre tracking is the accurate estimation of white matter fibre orientations within each imaging voxel. The diffusion tensor(More)
Neuroimaging advances have given rise to major progress in neurosciences and neurology, as ever more subtle and specific imaging methods reveal new aspects of the brain. One major limitation of current methods is the spatial scale of the information available. We present an approach to gain spatial resolution using post-processing methods based on diffusion(More)
Dynamic susceptibility contrast (DSC) MRI is now increasingly used for measuring perfusion in many different applications. The quantification of DSC data requires the measurement of the arterial input function (AIF) and the deconvolution of the tissue concentration time curve. One of the most accepted deconvolution methods is the use of singular value(More)
OBJECT Diffusion-based MRI tractography is an imaging tool increasingly used in neurosurgical procedures to generate 3D maps of white matter pathways as an aid to identifying safe margins of resection. The majority of white matter fiber tractography software packages currently available to clinicians rely on a fundamentally flawed framework to generate(More)
BACKGROUND MR techniques have been very powerful in providing indicators of tissue perfusion, particularly in studies of cerebral ischemia. There is considerable interest in performing absolute perfusion measurements, with the aim of improving the characterization of tissue "at risk" of stroke. However, some important caveats relating to absolute(More)
The time evolution of water diffusion, perfusion, T1, and T2 is investigated at high magnetic field (8.5 T) following permanent middle cerebral artery occlusion in the rat. Cerebral blood flow maps were obtained using arterial spin tagging. Although the quantitative perfusion measurements in ischemic tissue still pose difficulties, the combined perfusion(More)
Diffusion MRI streamlines tractography suffers from a number of inherent limitations, one of which is the accurate determination of when streamlines should be terminated. Use of an accurate streamlines propagation mask from segmentation of an anatomical image confines the streamlines to the volume of the brain white matter, but does not take full advantage(More)