Fernando Battaglini

Learn More
Layer-by-layer supramolecular structures composed of alternate layers of negatively charged enzymes and cationic redox polyelectrolyte have been assembled. Glucose oxidase (GOx), lactate oxidase (LOx) and soybean peroxidase (SBP) have been electrically wired to the underlying electrode by means of poly(allylamine) with [Os(bpy)2ClPyCOH]+ covalently attached(More)
The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the(More)
Pyridine-based osmium complexes bearing either a carboxylate or aldehyde group were covalently attached to glucose oxidase and were shown to work as mediators for the reoxidation of the enzyme. For the complex containing the carboxylate group, the binding was made through carbodiimide coupling to the amine residues in the protein. For the complex containing(More)
The activation of a lipopolysaccharide (LPS) with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) in the presence of a surfactant allows an efficient conjugation with dansyl hydrazine or horseradish peroxidase (HRP) in an aqueous medium maintaining its biological activity. In order to promote the reaction a series of amphiphilic compounds were(More)
This work explores the synergistic combination of ionic self-assembly and recognition-directed assembly for the modification of electrode surfaces with redox glycoenzymes on the basis of electroactive glycopolyelectrolyte-surfactant complexes.
This work describes the synergistic combination of ionic self-assembly and recognition-directed assembly with the aim of creating highly functional bioelectrochemical interfaces compatible with the supramolecular design of a wide variety of biosensing platforms. A recently synthesized glycopolyelectrolyte constituted of polyallylamine bearing redox-active(More)
A biotin-lipopolysaccharide (biotin-LPS) conjugate was synthesized from LPS smooth from Salmonella minnesota, yielding a conjugate with a biotin/LPS ratio equal to 1:1 and endotoxic activity of 0.08 EU ng(-1). The conjugate was used in an amperometric competitive assay to determine endotoxins with endotoxin-neutralizing protein (ENP) as the recognition(More)
The roles of chemical kinetics and mass transfer in three types of bioreactors (packed-column reactors, rotating disk bioreactors and amperometric detector), used with continuous-flow sample/reagent(s) processing, are discussed in detail. A normalized quantitative comparison between these types of reactors clearly shows that rotating disk reactors afford a(More)
The sequential electrochemical polymerization of aniline and N-(3-propane sulfonic acid)aniline (PSA) is proposed to construct a sensor able to detect ascorbate at physiological conditions. Compared to poly(aniline) modified electrode, a device with improved conducting and electrochemical properties at neutral pH is obtained. The electrochemical(More)
A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (10(10) cfu mL(-)(1)) and particular pregrowth conditions were needed. Reduction of catabolite repression by monosaccharides was achieved by pregrowth in(More)