Fernanda Ramos Gadelha

Learn More
Besides having a pivotal biological function as a component of coenzymes, riboflavin appears a promissing antitumoral agent, but the underlying molecular mechanism remains unclear. In this work, we demonstrate that irradiated riboflavin, when applied at μM concentrations, induces an orderly sequence of signaling events finally leading to leukemia cell(More)
As an intracellular parasite, Trypanosoma cruzi is exposed to reactive oxygen species. The study of the proteins involved in the hydroperoxide detoxification cascade, tryparedoxin peroxidase included, may lead to the development of a more specific chemotherapy for Chagas'disease. In this work, the involvement of TcCPX in T. cruzi resistance to(More)
Digitonin can be used to permeabilize selectively the plasma membrane of Trypanosoma cruzi epimastigotes without significantly affecting the functional integrity of mitochondria. Addition of digitonin at concentrations close to 64 microM caused decrease in the rate of basal respiration of epimastigotes similar to that caused by oligomycin. A further(More)
Understanding the energy-transduction pathways employed by Trypanosoma cruzi, the etiological agent of Chagas disease, may lead to the identification of new targets for development of a more effective therapy. Herein, the contribution of different substrates for O(2) consumption rates along T. cruzi epimastigotes (Tulahuen 2 and Y strains) growth curve was(More)
Goniothalamin is a styryllactone synthesized by plants of the genus Goniothalamus. The biological activities of this molecule, particularly its anti-protozoan, anti-fungal, and larvicidal properties, have received considerable attention. In this work, we investigated the action of the natural and synthetic enantiomers (R)-goniothalamin (1) and(More)
The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion(More)
High-affinity Ca(2+)-activated ATPases that do not show any demonstrable dependence on Mg2+ have been reported in the plasma membranes of different trypanosomatids, and it has been suggested [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar & Bhaduri (1990) J. Biol. Chem. 265, 11345-11351] that these enzymes may have a role in Ca2+(More)
Trypanosoma cruzi cytosolic (TcCPx) and mitochondrial tryparedoxin peroxidase (TcMPx) play a fundamental role in H(2)O(2) detoxification. Herein, mitochondrial bioenergetics was evaluated in cells that overexpressed TcCPx (CPx) and TcMPx (MPx) and in pTEX. In MPx, a higher expression was observed for TcCPx, and the same correlation was true for CPx.(More)
Incubation of T. cruzi epimastigotes with the lectin Cramoll 1,4 in Ca(2+) containing medium led to agglutination and inhibition of cell proliferation. The lectin (50 microg/ml) induced plasma membrane permeabilization followed by Ca(2+) influx and mitochondrial Ca(2+) accumulation, a result that resembles the classical effect of digitonin. Cramoll 1,4(More)
Within the mitochondrion of Leishmania infantum, hydroperoxide metabolism relies on the activity of tryparedoxin-dependent peroxidases (TXNPxs). Tryparedoxins (TXNs) are thioredoxin-related oxidoreductases, which in vitro are reduced by the trypanothione reductase/trypanothione [TR/T(SH)(2)] redox couple. Still, there is no evidence that this actually(More)