Fereshteh Esfandiari

  • Citations Per Year
Learn More
Human-induced pluripotent stem cell-derived neural progenitors (hiPSC-NPs) have the ability to self-renew and differentiate into glial and neuronal lineages, which makes them an invaluable source in cell replacement therapy for neurological diseases. Therefore, their enhanced proliferation and neuronal differentiation are pivotal features that can be used(More)
Primordial germ cells (PGCs) have the ability to be reprogrammed into a pluripotent state and are defined as embryonic germ cells (EGCs) in vitro. EGC formation is more efficient, has a shorter culture period than somatic cell reprogramming, and does not require exogenous genetic manipulation. Therefore, EGCs are a good model to analyze mechanisms by which(More)
Germ cells (GCs) are responsible for fertility and disruptions in their development or function cause infertility. However, current knowledge about the diverse mechanisms involved in GC development and function is still in its infancy. This is mainly because there are low numbers of GCs, especially during embryonic development. A deeper understanding of GCs(More)
OBJECTIVE Genetic modification of human embryonic stem cells (hESCs) is critical for their extensive use as a fundamental tool for cell therapy and basic research. Despite the fact that various methods such as lipofection and electroporation have been applied to transfer the gene of interest (GOI) into the target cell line, however, there are few re- ports(More)
Producing meiosis-competent germ cells (GCs) from embryonic stem cells (ESCs) is essential for developing advanced therapies for infertility. Here, a novel approach is presented for generation of GCs from ESCs. In this regard, microparticles (MPs) have been developed from alginate sulfate loaded with bone morphogenetic protein 4 (BMP4). The results here(More)
  • 1