Learn More
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in(More)
WHAT IS KNOWN There is a growing number of evidence showing, that the cannabinoid receptor 1 (CB1) antagonist rimonabant has many non-cannabimimetic actions, such as affecting the opioid system. The direct effect of rimonabant on opioid receptors has been studied so far mainly on μ-opioid receptors. However recently the δ-opioid receptor (DOR) receives much(More)
N-type voltage-dependent Ca(2+) channels (CaV 2.2) are located at nerve endings in the central and peripheral nervous systems and are strongly associated with the pathological processes of cerebral ischaemia and neuropathic pain. CaV 2.2 blockers such as the ω-conotoxin MVIIA (Prialt) are analgesic and have opioid-sparing effects. With the aim to develop(More)
WHAT IS KNOWN There is an increasing number of studies demonstrating the direct effect of the cannabinoid receptor 1 (CB1) antagonist/inverse agonist rimonabant on the opioid system. The kappa opioid receptors (KORs) are well known to mediate depression- and anxiety-like behavior. Clinical studies on chronic rimonabant administration have revealed that(More)
There is an increasing number of evidence showing analgesic properties of the kynurenic acid (KYNA), and also some studies demonstrate that kynurenine might interact with the opioid system. Therefore in this study, for the first time we investigated the direct binding affinity of KYNA and its structural analog KYNA-1 towards mu, kappa and delta opioid(More)
A growing amount of data demonstrates the interactions between cannabinoid, opioid and the transient receptor potential (TRP) vanilloid type 1 (TRPV1) receptors. These interactions can be bidirectional, inhibitory or excitatory, acute or chronic in their nature, and arise both at the molecular level (structurally and functionally) and in physiological(More)
Previously, we have shown that the N-methyl d-aspartate (NMDA)-receptor antagonist kynurenic acid (KYNA) and its analogue KYNA1 do not bind directly to mu, kappa and delta opioid receptors in vitro. On the other hand, chronic administration of KYNA and KYNA1 resulted in region (cortex vs striatum) and opioid receptor-type specific alterations in G-protein(More)
Two novel opioid analogues have been designed by substituting the native d-Ala residues in position 2,2' of biphalin with two residues of d-penicillamine or l-penicillamine and by forming a disulfide bond between the thiol groups. The so-obtained compound 9 containing d-penicillamines showed excellent μ/δ mixed receptor affinities (K i (δ) = 5.2 nM; K i (μ)(More)
Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported(More)
Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence(More)