Learn More
Bone marrow derived mesenchymal stromal cells (MSCs) have recently been implicated as one source of the tumor-associated stroma, which plays essential role in regulating tumor progression. In spite of the intensive research, the individual factors in MSCs controlling tumor progression have not been adequately defined. In the present study we have examined(More)
The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS(More)
Bone tissue regeneration is a major, worldwide medical need, and several strategies have been developed to support the regeneration of extensive bone defects, including stem cell based bone grafts. In addition to the application of stem cells with high osteogenic potential, it is important to maintain proper blood flow in a bone graft to avoid inner graft(More)
The neural crest is a transient, multipotent, migratory cell population that is unique to vertebrate embryos and gives rise to many derivatives, ranging from the neuronal and glial components of the peripheral nervous system to the ectomesenchymal derivatives of the craniofacial area and pigment cells in the skin. Intriguingly, the neural crest derived stem(More)
Mesenchymal stem or multipotent stromal cells (MSCs) have been implicated in tissue maintenance and repair and regulating immune effector cells through different mechanisms. These functions in mouse were primarily described for bone marrow (BM)-derived MSCs. To learn more about MSCs of different tissue origin, we compared the immunophenotype,(More)
  • 1