Learn More
Following the description of the [3H]deltorphin II, it has been reported that the modification of deltorphin II with the substitution of Val5,6 residues by the more hydrophobic IIe5,6 residues leads to an increased affinity and selectivity. The IIe5,6 deltorphin II (Tyr-D-Ala-Phe-Gly-IIe-IIe-HH2) was tritiated by catalytic dehalogenation and labelled rat(More)
The use of compounds with high selectivity for each opioid receptor (mu, delta and kappa) is crucial for understanding the mechanisms of opioid actions. Until recently non-peptide mu-opioid receptor selective antagonists were not available. However, N-cyclopropylmethyl-4,14-dimethoxy-morphinan-6-one (cyprodime) has shown a very high selectivity for(More)
Opioid receptor binding properties of [3H]Tyr-D-Ala-Phe-Phe-NH2 (TAPP) were characterized in rat brain and Chinese hamster ovary (CHO) cells expressing the rat mu-receptor. In rat brain, [3H]TAPP labeled a single class of opioid sites with a dissociation constant (Kd) of 0.31 nM and maximal number of binding sites (Bmax) of 119 fmol/mg protein. In CHO-mu/1(More)
The highly potent micro -opioid receptor agonist 14-methoxymetopon (4,5alpha-epoxy-3-hydroxy-14beta-methoxy-5beta,17-dimethylmorphinan-6-one) was prepared in tritium labelled form by a catalytic dehalogenation method resulting in a specific radioactivity of 15.9 Ci/mmol. Opioid binding characteristics of [3H]14-methoxymetopon were determined using(More)
Following the observation that the activity of gonadotropin-releasing hormone III (GnRH-III) in the suppression of growth of MDA-MB-231 and MCF-7 breast cancer cells surpasses that of GnRH and other analogs thereof, analogs of GnRH-III were synthesized to investigate the structural basis for the improved antitumor activity. Compounds synthesized include(More)
A conceptionally new 3D molecular descriptor type and methodology are deduced by simple statistical thermodynamic reasoning, based on the free energy change encountered during a transformation of a conformational ensemble of the ligand to an active conformation. The performance of the descriptor was first tested on 37 endomorphin analogues with mu-opiate(More)
Steric and electrostatic requirements at position 6 of [Nle(10)]NKA(4-10), a full agonist of NK-2 receptors, for molecular recognition by the receptor were studied. Two series of peptide analogues, (a) p-substituted analogues, [p-X-Phe(6), Nle(10)]NKA(4-10), where X = F, Cl, Br, I, NH(2), NO(2), and (b) [D-Phe(6),Nle(10)]NKA(4-10),(More)
Endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH(2)) is a highly potent and selective mu-opioid receptor agonist. A conformational analysis of EM2 was carried out by simulated annealing (SA) and molecular dynamics (MD) methods. Molecular modeling was conducted on both neutral (N-terminal NH(2)) and charged (N-terminal NH(3) (+)) molecules. Based on the results of(More)
Increasing number of publications shows that cannabinoid receptor 1 (CB(1)) specific compounds might act in a CB(1) independent manner, including rimonabant, a potent CB(1) receptor antagonist. Opioids, cannabinoids and their receptors are well known for their overlapping pharmacological properties. We have previously reported a prominent decrease in(More)