Ferenc Orosz

Learn More
The disordered tubulin polymerization promoting protein (TPPP/p25) was found to be co-enriched in neuronal and glial inclusions with α-synuclein in Parkinson disease and multiple system atrophy, respectively; however, co-occurrence of α-synuclein with β-amyloid (Aβ) in human brain inclusions has been recently reported, suggesting the existence of mixed type(More)
Previously, we have demonstrated the presence of a protein factor [tubulin polymerization perturbing protein (TPPP)] in brain and neuroblastoma cell but not in muscle extract that uniquely influences the microtubule assembly. Here we describe a procedure for isolation of this protein from the cytosolic fraction of bovine brain and present evidence that this(More)
TPPP/p25, the first representative of a new protein family, identified as a brain-specific unfolded protein induces aberrant microtubule assemblies in vitro, suppresses mitosis in Drosophila embryo and is accumulated in inclusion bodies of human pathological brain tissues. In this paper, we present prediction and additional experimental data that validate(More)
  • Ferenc Orosz
  • Infection, genetics and evolution : journal of…
  • 2009
A new protein, termed apicortin, has been identified, which contains a DCX (doublecortin) and a partial p25-alpha domain. The DCX domains of the doublecortin superfamily are responsible for their microtubule binding and stabilizing properties. The p25-alpha domain occurs in TPPPs (Tubulin Polymerization Promoting Proteins) exhibiting Microtubule Associated(More)
Research in the last 10 years has revealed that the development of neurodegeneration is a multistep process during which one or few specific mutant protein species of altered conformation initiate aberrant protein-protein interactions resulting in aggregates forming plaques. This review focuses on the heteroassociations of the mutant proteins with(More)
In a Hungarian family with triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate keto-isomerase, EC deficiency, two germ-line identical, but phenotypically differing compound heterozygote brothers (one of them with neurological disorder) have been identified with the same very low (<5%) TPI activity and 20- or 40-fold higher erythrocyte(More)
Enolase is a glycolytic enzyme, expressed as cell-type specific isoforms in higher vertebrates. Herein we demonstrated for the first time that enolase isoforms interact with microtubules during muscle satellite cell differentiation. While in undifferentiated myoblasts the ubiquitous alphaalpha enolase isoform, expressed at high level, exhibited extensive(More)
In a Hungarian family with severe decrease in triosephosphate isomerase (TPI) activity, 2 germ line-identical but phenotypically differing compound heterozygote brothers inherited 2 independent (Phe240Leu and Glu145stop codon) mutations. The kinetic, thermodynamic, and associative properties of the recombinant human wild-type and Phe240Leu mutant enzymes(More)
The modulatory action of Ca2+-calmodulin on multiple targets is inhibited by trifluoperazine, which competes with target proteins for calmodulin binding. The structure of calmodulin crystallized with two trifluoperazine molecules is determined by X-ray crystallography at 2.74 A resolution. The X-ray data together with the characteristic and distinct signals(More)
TPPP/p25 is a brain-specific protein, which induces tubulin polymerization and microtubule (MT) bundling and is enriched in Lewy bodies characteristic of Parkinson's disease [Tirián et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 13976-13981]. We identified two human gene sequences, CG1-38 and p25beta, which encoded homologous proteins, that we termed p20(More)