Learn More
Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the(More)
BACKGROUND A metabolic network is the sum of all chemical transformations or reactions in the cell, with the metabolites being interconnected by enzyme-catalyzed reactions. Many enzymes exist in numerous species while others occur only in a few. We ask if there are relationships between the phylogenetic profile of an enzyme, or the number of different(More)
Increased risk of infectious disease is assumed to be a major cost of group living, yet empirical evidence for this effect is mixed. We studied whether larger social groups are more subdivided structurally. If so, the social subdivisions that form in larger groups may act as barriers to the spread of infection, weakening the association between group size(More)
In order to better understand several cellular processes, it is helpful to study how various components make up the system. This systems perspective is supported by several modelling tools including network analysis. Networks of protein-protein interactions (PPI networks) offer a way to depict, visualize and quantify the functioning and relative importance(More)
BACKGROUND Earlier, we identified proteins connecting different disease proteins in the human protein-protein interaction network and quantified their mediator role. An analysis of the networks of these mediators shows that proteins connecting heart disease and diabetes largely overlap with the ones connecting heart disease and obesity. RESULTS We(More)
Recent investigations on the structure of complex networks have provided interesting results for ecologists. Being inspired by these studies, we analyse a well-defined set of small model food webs. The extinction probability caused by internal Lotka-Volterra dynamics is compared to the position of species. Simulations have revealed that some global(More)
In order to understand the complex relationships among the components of biological systems, network models have been used for a long time. Although they have been extensively used for visualization, data storage, structural analysis and simulation, some computational processes are still very inefficient when applied on complex networks. In particular, any(More)
BACKGROUND Systems biology makes it possible to study larger and more intricate systems than before, so it is now possible to look at the molecular basis of several diseases in parallel. Analyzing the interaction network of proteins in the cell can be the key to understand how complex processes lead to diseases. Novel tools in network analysis provide the(More)
The study of gene and protein interaction networks has improved our understanding of the multiple, systemic levels of regulation found in eukaryotic and prokaryotic organisms. Here we carry out a large-scale analysis of the protein-protein interaction (PPI) network of fission yeast (Schizosaccharomyces pombe) and establish a method to identify 'linker'(More)