Ferdinando Giacco

Learn More
We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate and fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre and(More)
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that,(More)
–We study the storage of multiple phase-coded patterns as stable dynamical attractors in recurrent neural networks with sparse connectivity. To determine the synaptic strength of existent connections and store the phase-coded patterns, we introduce a learning rule inspired to the spike-timing dependent plasticity (STDP). We find that, after learning, the(More)
  • 1