Learn More
Toll-like receptors (TLRs) belong to the Toll-like receptor/interleukin-1 receptor (TLR/IL-1R) superfamily which is defined by a common cytoplasmic Toll/interleukin-1 receptor (TIR) domain. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to trigger an immediate defensive response. SIGIRR (single(More)
Toll-like receptors (TLRs) play a key role in the innate immune system. TLRs recognize pathogen-associated molecular patterns and initiate an intracellular kinase cascade to induce an immediate defensive response. During recent years TLRs have become the focus of tremendous research interest. A central repository for the growing amount of relevant TLR(More)
Confocal Raman spectroscopy is a noninvasive alternative to established cell imaging methods because it does not require chemical fixation, the use of fluorescent markers, or genetic engineering. In particular, single live-cell, high-resolution imaging by confocal Raman microscopy is desirable because it allows further experiments concerning the(More)
So far, 13 groups of mammalian Toll-like receptors (TLRs) have been identified. Most TLRs have been shown to recognize pathogen-associated molecular patterns from a wide range of invading agents and initiate both innate and adaptive immune responses. The TLR ectodomains are composed of varying numbers and types of leucine-rich repeats (LRRs). As the crystal(More)
In tapping mode atomic force microscopy (AFM) the highly nonlinear tip-sample interaction gives rise to a complicated dynamics of the microcantilever. Apart from the well-known bistability under typical imaging conditions the system exhibits a complex dynamics at small average tip-sample distances, which are typical operation conditions for mechanical(More)
The scaling-index method (SIM) is a novel tool for image processing in scanning-probe microscopy. Originating from the theory of complex systems, the SIM can be used in order to extract structural information from arbitrary data sets. This method can readily be applied to the analysis of digital atomic-force microscopy (AFM) images. Especially for(More)
BACKGROUND Leucine-rich repeats (LRRs) are present in more than 6000 proteins. They are found in organisms ranging from viruses to eukaryotes and play an important role in protein-ligand interactions. To date, more than one hundred crystal structures of LRR containing proteins have been determined. This knowledge has increased our ability to use the crystal(More)
Toll-like receptors (TLRs) play a key role in the innate immune system. The TLR7, 8, and 9 compose a family of intracellularly localized TLRs that signal in response to pathogen-derived nucleic acids. So far, there are no crystallographic structures for TLR7, 8, and 9. For this reason, their ligand-binding mechanisms are poorly understood. To enable first(More)
A two-dimensional molecular template structure of 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA) was formed on a highly oriented pyrolytic graphite surface (HOPG) by self-assembly at the liquid-solid interface. Scanning tunneling microscopy (STM) investigations show high-resolution images of the porous structure on the surface. After the host(More)
This scanning tunneling microscopy (STM) study uses a supramolecular two-dimensional architecture of trimesic acid molecules adsorbed on a graphite substrate as a host for the incorporation of C 60 as a molecular guest. By choosing a proper solvent, it was possible to verify that self-assembly of the host-guest structure can be accomplished at the liquid(More)