Learn More
Detailed knowledge of the anatomy and connectivity pattern of cortico-basal ganglia circuits is essential to an understanding of abnormal cortical function and pathophysiology associated with a wide range of neurological and neuropsychiatric diseases. We aim to study the spatial extent and topography of human basal ganglia connectivity in vivo.(More)
The processing of spoken language has been attributed to areas in the superior temporal lobe, where speech stimuli elicit the greatest activation. However, neurobiological and psycholinguistic models have long postulated that knowledge about the articulatory features of individual phonemes has an important role in their perception and in speech(More)
A methodology for fMRI data analysis confined to the cortex, Cortical Surface Mapping (CSM), is presented. CSM retains the flexibility of the General Linear Model based estimation, but the procedures involved are adapted to operate on the cortical surface, while avoiding to resort to explicit flattening. The methodology is tested by means of simulations and(More)
Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore(More)
When speech is degraded, word report is higher for semantically coherent sentences (e.g., her new skirt was made of denim) than for anomalous sentences (e.g., her good slope was done in carrot). Such increased intelligibility is often described as resulting from "top-down" processes, reflecting an assumption that higher-level (semantic) neural processes(More)
Currently available laboratory procedures might provide additional information to psychiatric diagnostic systems for more valid classifications of mental disorders. To identify the correlative pattern of gray matter distribution that best discriminates schizophrenia patients from healthy subjects, we applied discriminant function analysis techniques using(More)
We present a comparison between a voxel based approach and a region based technique for detecting brain activation signals in sequences of functional Magnetic Resonance Images (fMRI). The region based approach uses an automatic parcellation of the brain that can incorporate anatomical constraints. A standard univariate voxel based detection method(More)
Human functional MRI studies frequently reveal the joint activation of parietal and of lateral and mesial frontal areas during various cognitive tasks. To analyze the geometrical organization of those networks, we used an automatized clustering algorithm that parcels out sets of areas based on their similar profile of task-related activations or(More)
In this paper we propose a generic automatic approach for the parcellation of the cortical surface into labeled gyri. These gyri are defined from a set of pairs of sulci selected by the user. The selected sulci are first automatically identified in the data, then projected onto the cortical surface. The parcellation stems from two nested Voronoï diagrams(More)
In this paper we propose a methodology for brain parcel-lation with anatomical and functional constraints dedicated to fMRI data analysis. The aim is to provide a representation of fMRI data at any intermediate dimensionality between voxel and region of interest. In order to fill in the gap between these two approaches we developed an automatic parcellation(More)