Learn More
Fig. 1: We present a novel place recognition system that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image. The proposed system utilizes convolutional network features as robust landmark descriptors to recognize places despite severe viewpoint and condition changes, without requiring any environment-specific(More)
This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may(More)
After the incredible success of deep learning in the computer vision domain, there has been much interest in applying Convolutional Network (ConvNet) features in robotic fields such as visual navigation and SLAM. Unfortunately, there are fundamental differences and challenges involved. Computer vision datasets are very different in character to robotic(More)
Real-world environments such as houses and offices change over time, meaning that a mobile robot's map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store(More)
Fine-grained leaf classification has concentrated on the use of traditional shape and statistical features to classify ideal images. In this paper we evaluate the effectiveness of traditional hand-crafted features and propose the use of deep convolutional neural network (Conv Net) features. We introduce a range of condition variations to explore the(More)
— This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot's working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense pose-graph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels.(More)
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues,(More)
This paper presents a novel approach to fruit detection using deep convolutional neural networks. The aim is to build an accurate, fast and reliable fruit detection system, which is a vital element of an autonomous agricultural robotic platform; it is a key element for fruit yield estimation and automated harvesting. Recent work in deep neural networks has(More)
This paper presents a method to enable a mobile robot working in non-stationary environments to plan its path and localize within multiple map hypotheses simultaneously. The maps are generated using a long-term and short-term memory mechanism that ensures only persistent configurations in the environment are selected to create the maps. In order to evaluate(More)